Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO 3 by using GGA and mBJ approach
Tài liệu tham khảo
Deutsch, 2009, Technetium chemistry and technetium radiopharmaceuticals, Prog. Inorg. Chem., 30, 75, 10.1002/9780470166314.ch2
Lieser, 1993, Technetium in the nuclear fuel cycle, in medicine and in the environment, Radiochim. Acta, 63, 5, 10.1524/ract.1993.63.special-issue.5
Rodriguez, 2011, High temperature magnetic ordering in the 4 d Perovskite SrTcO3, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.067201
Thorogood, 2011, Structural phase transitions and magnetic order in SrTcO3, Dalton Trans., 40, 7228, 10.1039/c1dt10445d
Mravlje, 2012, Origin of the high Néel temperature in SrTcO3, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.197202
Borisov, 2012, Magnetic exchange interactions and antiferromagnetism of A TcO 3 (A= Ca, Sr, Ba) studied from first principles, Phys. Rev. B, 85, 10.1103/PhysRevB.85.134410
Ma, 2011, The active role played by nonmagnetic Sr in magnetostructural coupling in SrTcO3 from first principles, Phys. Lett. A, 375, 3615, 10.1016/j.physleta.2011.08.031
Franchini, 2011, Exceptionally strong magnetism in the 4 d perovskites R TcO 3 (R= Ca, Sr, Ba), Phys. Rev. B, 83, 10.1103/PhysRevB.83.220402
Wang, 2012, Comparative study of the magnetism of SrTcO3 and Ca (Sr) MnO 3, Phys. Lett. A, 376, 3313, 10.1016/j.physleta.2012.08.004
Middey, 2012, Route to high Néel temperatures in 4 d and 5 d transition metal oxides, Phys. Rev. B, 86, 10.1103/PhysRevB.86.104406
Eglitis, 2015, Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces, Appl. Surf. Sci., 358, 556, 10.1016/j.apsusc.2015.08.010
Eglitis, 2017, Systematic trends in (001) surface ab initio calculations of ABO3 perovskites, J. Saudi Chem. Soc.
G. Nazir, et al., Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3, Comput. Condens. Matter, 4 (2015) 32–39.
Schwarz, 2003, Comput. Mater. Sci., 28, 259, 10.1016/S0927-0256(03)00112-5
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Koller, 2012, Improving the modified Becke–Johnson exchange potential, Phys. Rev. B, 85, 10.1103/PhysRevB.85.155109
Goldschmidt, 1926, Die gesetze der krystallochemie, Naturwissenschaften, 14, 477, 10.1007/BF01507527
Hao, 2006, First-principles calculations of elastic constants of c-BN, Phys. B, 382, 118, 10.1016/j.physb.2006.02.005
Fine, 1984, Elastic constants versus melting temperature in metals, Scr. Metall., 18, 951, 10.1016/0036-9748(84)90267-9
Screiber, 1973
Tariq, 2018, Exploring structural, electronic and thermo-elastic properties of metallic AMoO 3 (A= Pb, Ba, Sr) molybdates, Appl. Phys. A, 124, 44, 10.1007/s00339-017-1452-x
Nadeem, 2016, DFT study of structural, electronic, thermo-elastic properties and plausible origin of superconductivity due to quantum degenerate states in LaTiO3, J. Theor. Comput. Chem., 15, 10.1142/S0219633616500449
Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, 10.1103/PhysRevB.46.6131
Barrett, 1967, Antiferromagnetic and crystal structures of Alpha‐Oxygen, J. Chem. Phys., 47, 592, 10.1063/1.1711936
Karki, 1997, Elastic instabilities in crystals from ab initio stress–strain relations, J. Phys., 9, 8579
Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437