Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO 3 by using GGA and mBJ approach

Chinese Journal of Physics - Tập 56 - Trang 308-314 - 2018
S.M. Sohail Gilani1, Saad Tariq2, M. Imran Jamil3, Bashir Tahir4, M.A. Faridi1
1Centre for High Energy Physics, University of Punjab, Lahore, 54590, Pakistan
2Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54590, Pakistan
3Department of Physics, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
4Department of Electrical and Computer Engineering, McMaster University, Ontario, Canada

Tài liệu tham khảo

Deutsch, 2009, Technetium chemistry and technetium radiopharmaceuticals, Prog. Inorg. Chem., 30, 75, 10.1002/9780470166314.ch2 Lieser, 1993, Technetium in the nuclear fuel cycle, in medicine and in the environment, Radiochim. Acta, 63, 5, 10.1524/ract.1993.63.special-issue.5 Rodriguez, 2011, High temperature magnetic ordering in the 4 d Perovskite SrTcO3, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.067201 Thorogood, 2011, Structural phase transitions and magnetic order in SrTcO3, Dalton Trans., 40, 7228, 10.1039/c1dt10445d Mravlje, 2012, Origin of the high Néel temperature in SrTcO3, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.197202 Borisov, 2012, Magnetic exchange interactions and antiferromagnetism of A TcO 3 (A= Ca, Sr, Ba) studied from first principles, Phys. Rev. B, 85, 10.1103/PhysRevB.85.134410 Ma, 2011, The active role played by nonmagnetic Sr in magnetostructural coupling in SrTcO3 from first principles, Phys. Lett. A, 375, 3615, 10.1016/j.physleta.2011.08.031 Franchini, 2011, Exceptionally strong magnetism in the 4 d perovskites R TcO 3 (R= Ca, Sr, Ba), Phys. Rev. B, 83, 10.1103/PhysRevB.83.220402 Wang, 2012, Comparative study of the magnetism of SrTcO3 and Ca (Sr) MnO 3, Phys. Lett. A, 376, 3313, 10.1016/j.physleta.2012.08.004 Middey, 2012, Route to high Néel temperatures in 4 d and 5 d transition metal oxides, Phys. Rev. B, 86, 10.1103/PhysRevB.86.104406 Eglitis, 2015, Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces, Appl. Surf. Sci., 358, 556, 10.1016/j.apsusc.2015.08.010 Eglitis, 2017, Systematic trends in (001) surface ab initio calculations of ABO3 perovskites, J. Saudi Chem. Soc. G. Nazir, et al., Putting DFT to the trial: First principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3, Comput. Condens. Matter, 4 (2015) 32–39. Schwarz, 2003, Comput. Mater. Sci., 28, 259, 10.1016/S0927-0256(03)00112-5 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Koller, 2012, Improving the modified Becke–Johnson exchange potential, Phys. Rev. B, 85, 10.1103/PhysRevB.85.155109 Goldschmidt, 1926, Die gesetze der krystallochemie, Naturwissenschaften, 14, 477, 10.1007/BF01507527 Hao, 2006, First-principles calculations of elastic constants of c-BN, Phys. B, 382, 118, 10.1016/j.physb.2006.02.005 Fine, 1984, Elastic constants versus melting temperature in metals, Scr. Metall., 18, 951, 10.1016/0036-9748(84)90267-9 Screiber, 1973 Tariq, 2018, Exploring structural, electronic and thermo-elastic properties of metallic AMoO 3 (A= Pb, Ba, Sr) molybdates, Appl. Phys. A, 124, 44, 10.1007/s00339-017-1452-x Nadeem, 2016, DFT study of structural, electronic, thermo-elastic properties and plausible origin of superconductivity due to quantum degenerate states in LaTiO3, J. Theor. Comput. Chem., 15, 10.1142/S0219633616500449 Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, 46, 6131, 10.1103/PhysRevB.46.6131 Barrett, 1967, Antiferromagnetic and crystal structures of Alpha‐Oxygen, J. Chem. Phys., 47, 592, 10.1063/1.1711936 Karki, 1997, Elastic instabilities in crystals from ab initio stress–strain relations, J. Phys., 9, 8579 Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437