Computing real square roots of a real matrix

Linear Algebra and Its Applications - Tập 88 - Trang 405-430 - 1987
Nicholas J. Higham1
1Department of Mathematics, University of Manchester, Manchester M13 9PL, England

Tài liệu tham khảo

Björck, 1983, A Schur method for the square root of a matrix, Linear Algebra Appl., 52/53, 127, 10.1016/0024-3795(83)80010-X Cline, 1979, An estimate for the condition number of a matrix, SIAM J. Numer. Anal., 16, 368, 10.1137/0716029 Denman, 1981, Roots of real matrices, Linear Algebra Appl., 36, 133, 10.1016/0024-3795(81)90226-3 Denman, 1976, The matrix sign function and computations in systems, Appl. Math. Comput., 2, 63, 10.1016/0096-3003(76)90020-5 Fröberg, 1969 Gantmacher, 1959, Vol. 1 Golub, 1979, A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, AC-24, 909, 10.1109/TAC.1979.1102170 Golub, 1983 Hoskins, 1978, A faster method of computing the square root of a matrix, IEEE Trans. Automat. Control, AC-23, 494, 10.1109/TAC.1978.1101761 Laasonen, 1958, On the iterative solution of the matrix equation AX2 − I = 0, M.T.A.C., 12, 109 Lancaster, 1969 Perlis, 1952 Alefeld, 1982, On square roots of M-matrices, Linear Algebra Appl., 42, 119, 10.1016/0024-3795(82)90143-4 Culver, 1966, On the existence and uniqueness of the real logarithm of a matrix, Proc. Amer. Math. Soc., 17, 1146, 10.1090/S0002-9939-1966-0202740-6 Higham, 1984, Newton's method for the matrix square root Higham, 1984, Computing the polar decomposition—with applications Rinehart, 1955, The equivalence of definitions of a matric function, Amer. Math. Monthly, 62, 395, 10.2307/2306996