Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum
Tài liệu tham khảo
Klaenhammer, 1993, Genetics of bacteriocins produced by lactic acid bacteria, FEMS microbiol, Reviews, 12, 39
Garneau, 2002, Two-peptide bacteriocins produced by lactic acid bacteria, Biochimie, 84, 577, 10.1016/S0300-9084(02)01414-1
Nissen-Meyer, 2010, Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins, Probiotics Antimicrob, Proteins, 2, 52
Moll, 1999, Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK, J. Bacteriol., 181, 4848, 10.1128/JB.181.16.4848-4852.1999
Anderssen, 1998, Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A, Appl. Environ. Microbiol., 64, 2269, 10.1128/AEM.64.6.2269-2272.1998
Diep, 2009, An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum, Peptides, 30, 1562, 10.1016/j.peptides.2009.05.014
Pal, 2014, Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli, World J. Microbiol. Biotechnol., 30, 2829, 10.1007/s11274-014-1708-y
Sharma, 2014, Anti-candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action, Fungal Biol., 118, 264, 10.1016/j.funbio.2013.12.006
Cleveland, 2001, Bacteriocins: safe, natural antimicrobials for food preservation, J. of Food Microbiol., 71, 1, 10.1016/S0168-1605(01)00560-8
Mollet, 1997, Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor, J. Biol. Chem., 272, 14277, 10.1074/jbc.272.22.14277
Moll, 1996, Lactococcin G is a potassium ion-conducting, two-component bacteriocin, J. Bacteriol., 178, 600, 10.1128/jb.178.3.600-605.1996
Moll, 1998, Mechanistic properties of the two-component bacteriocin lactococcin G, J. Bacteriol., 180, 96, 10.1128/JB.180.1.96-99.1998
Moll, 1999, complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK, J. Bacteriol., 181, 4848, 10.1128/JB.181.16.4848-4852.1999
Abee, 1994, Kinetic studies of the action of lactacin F, a bacteriocin produced by lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane, Appl. Environ. Microbiol., 60, 1006, 10.1128/AEM.60.3.1006-1013.1994
Cuozzo, 2003, Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity, Curr. Microbiol., 46, 180, 10.1007/s00284-002-3844-0
Hauge, 1999, Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K, J. Bacteriol., 181, 740, 10.1128/JB.181.3.740-747.1999
Fimland, 2008, Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF, BBA-Proteins Proteom., 1784, 1711, 10.1016/j.bbapap.2008.05.003
Nicolas, 2009, Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides, FEBS J., 276, 6483, 10.1111/j.1742-4658.2009.07359.x
Diep, 2007, Common mechanisms of target cell recognition and immunity for class II bacteriocins, Proc. Natl. Acad. Sci., 104, 2384, 10.1073/pnas.0608775104
Kjos, 2014, Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis, Mol. Microbiol., 92, 1177, 10.1111/mmi.12632
Riley, 2002, Bacteriocins: evolution, ecology, and application, Annu. Rev. Microbiol., 56, 117, 10.1146/annurev.micro.56.012302.161024
Carr, 2002, The lactic acid bacteria: a literature survey, Crit. Rev. Microbiol., 28, 281, 10.1080/1040-840291046759
Roos, 2002, The use of probiotics in head and neck infections, Curr. Infect. Dis. Rep., 4, 211, 10.1007/s11908-002-0081-4
Parente, 2010, Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study, Int. J. Food Microbiol., 144, 270, 10.1016/j.ijfoodmicro.2010.10.005
Omar, 2006, Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso, Int. J. Food Microbiol., 112, 44, 10.1016/j.ijfoodmicro.2006.06.014
Fields, 2009, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res., 35, 161, 10.1111/j.1399-3011.1990.tb00939.x
Andrews, 2001, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother., 48, 5, 10.1093/jac/48.suppl_1.5
Tao, 2011, Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus, Carbohydr. Polym., 86, 969, 10.1016/j.carbpol.2011.05.054
Wu, 1999, Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli, Biochemistry, 38, 7235, 10.1021/bi9826299
Molenaar, 1991, Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator, BBA-Gen. Subjects, 1115, 75, 10.1016/0304-4165(91)90014-8
Yan, 2012, Membrane active antitumor activity of NK18, a mammalian NK-lysin-derived cationic antimicrobial peptide, Biochimie, 94, 184, 10.1016/j.biochi.2011.10.005
Wheeler, 1975, Freeze-drying from tertiary butanol in the preparation of endocardium for scanning electron microscopy, Biotech. Histochem., 50, 331
Yamanaka, 2005, Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis, Appl. Environ. Microbiol., 71, 7589, 10.1128/AEM.71.11.7589-7593.2005
Dathe, 1999, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells, BBA-Biomembranes, 1462, 71, 10.1016/S0005-2736(99)00201-1
Hancock, 2002, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiol. Lett., 206, 143, 10.1111/j.1574-6968.2002.tb11000.x
Chikindas, 1993, Pediocin PA1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells, Appl. Environ. Microbiol., 59, 3577, 10.1128/AEM.59.11.3577-3584.1993
McAuliffe, 1998, Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential, Appl. Environ. Microbiol., 64, 439, 10.1128/AEM.64.2.439-445.1998
Moll, 1997, Role of transmembrane pH gradient and membrane binding in nisin pore formation, J. Bacteriol., 179, 135, 10.1128/jb.179.1.135-140.1997
Tahara, 1996, Isolation, partial characterization, and mode of action of acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132, Appl. Environ. Microbiol., 62, 892, 10.1128/AEM.62.3.892-897.1996
Zhou, 2008, Mode of action of pentocin 31–1: an antilisteria bacteriocin produced by lactobacillus pentosus from Chinese traditional ham, Food Control, 19, 817, 10.1016/j.foodcont.2007.08.008
Castellano, 2003, Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705, J. of Food Microbiol., 85, 35, 10.1016/S0168-1605(02)00479-8
Wang, 2014, The cooperative behaviour of antimicrobial peptides in model membranes, BBA-Biomembranes, 1838, 2870, 10.1016/j.bbamem.2014.07.002
Kalchayanand, 2004, Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins, Int. J. Food Microbiol., 91, 91, 10.1016/S0168-1605(03)00324-6
Rinrada Pattanayaiying, 2014, Catherine N. Cutter, effect of lauric arginate, nisin Z, and a combination against several food-related bacteria, Int. J. Food Microbiol., 188, 135, 10.1016/j.ijfoodmicro.2014.07.013
Silva, 1976, Bacterial mesosomes: real structures of artifacts?, BBA-Biomembranes, 443, 92, 10.1016/0005-2736(76)90493-4
Friedrich, 2000, Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria, Antimicrob. Agents Chemother., 44, 2086, 10.1128/AAC.44.8.2086-2092.2000
Gonzalez, 1996, Bactericidal mode of action of plantaricin C, Appl. Environ. Microbiol., 62, 2701, 10.1128/AEM.62.8.2701-2709.1996
Bendali, 2008, Kinetic of production and mode of action of the lactobacillus paracasei subsp. Paracasei anti-listerial bacteriocin, an Algerian isolate, LWT-food, Sci. Technol., 41, 1784
Cao, 2012, Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo, PLoS One, 7
Kuehn, 2005, Bacterial outer membrane vesicles and the host-pathogen interaction, Genes Dev., 19, 2645, 10.1101/gad.1299905
Lee, 2009, Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics, 9, 5425, 10.1002/pmic.200900338
Mashburn-Warren, 2006, Special delivery: vesicle trafficking in prokaryotes, Mol. Microbiol., 61, 839, 10.1111/j.1365-2958.2006.05272.x