Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum

Biochimica et Biophysica Acta (BBA) - Biomembranes - Tập 1858 - Trang 274-280 - 2016
Xu Zhang1, Yang Wang1, Lei Liu1, Yunlu Wei1, Nan Shang1, Xiangmei Zhang1, Pinglan Li1
1Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China

Tài liệu tham khảo

Klaenhammer, 1993, Genetics of bacteriocins produced by lactic acid bacteria, FEMS microbiol, Reviews, 12, 39 Garneau, 2002, Two-peptide bacteriocins produced by lactic acid bacteria, Biochimie, 84, 577, 10.1016/S0300-9084(02)01414-1 Nissen-Meyer, 2010, Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins, Probiotics Antimicrob, Proteins, 2, 52 Moll, 1999, Complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK, J. Bacteriol., 181, 4848, 10.1128/JB.181.16.4848-4852.1999 Anderssen, 1998, Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A, Appl. Environ. Microbiol., 64, 2269, 10.1128/AEM.64.6.2269-2272.1998 Diep, 2009, An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum, Peptides, 30, 1562, 10.1016/j.peptides.2009.05.014 Pal, 2014, Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli, World J. Microbiol. Biotechnol., 30, 2829, 10.1007/s11274-014-1708-y Sharma, 2014, Anti-candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action, Fungal Biol., 118, 264, 10.1016/j.funbio.2013.12.006 Cleveland, 2001, Bacteriocins: safe, natural antimicrobials for food preservation, J. of Food Microbiol., 71, 1, 10.1016/S0168-1605(01)00560-8 Mollet, 1997, Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor, J. Biol. Chem., 272, 14277, 10.1074/jbc.272.22.14277 Moll, 1996, Lactococcin G is a potassium ion-conducting, two-component bacteriocin, J. Bacteriol., 178, 600, 10.1128/jb.178.3.600-605.1996 Moll, 1998, Mechanistic properties of the two-component bacteriocin lactococcin G, J. Bacteriol., 180, 96, 10.1128/JB.180.1.96-99.1998 Moll, 1999, complementary and overlapping selectivity of the two-peptide bacteriocins plantaricin EF and JK, J. Bacteriol., 181, 4848, 10.1128/JB.181.16.4848-4852.1999 Abee, 1994, Kinetic studies of the action of lactacin F, a bacteriocin produced by lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane, Appl. Environ. Microbiol., 60, 1006, 10.1128/AEM.60.3.1006-1013.1994 Cuozzo, 2003, Differential roles of the two-component peptides of lactocin 705 in antimicrobial activity, Curr. Microbiol., 46, 180, 10.1007/s00284-002-3844-0 Hauge, 1999, Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K, J. Bacteriol., 181, 740, 10.1128/JB.181.3.740-747.1999 Fimland, 2008, Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF, BBA-Proteins Proteom., 1784, 1711, 10.1016/j.bbapap.2008.05.003 Nicolas, 2009, Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides, FEBS J., 276, 6483, 10.1111/j.1742-4658.2009.07359.x Diep, 2007, Common mechanisms of target cell recognition and immunity for class II bacteriocins, Proc. Natl. Acad. Sci., 104, 2384, 10.1073/pnas.0608775104 Kjos, 2014, Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis, Mol. Microbiol., 92, 1177, 10.1111/mmi.12632 Riley, 2002, Bacteriocins: evolution, ecology, and application, Annu. Rev. Microbiol., 56, 117, 10.1146/annurev.micro.56.012302.161024 Carr, 2002, The lactic acid bacteria: a literature survey, Crit. Rev. Microbiol., 28, 281, 10.1080/1040-840291046759 Roos, 2002, The use of probiotics in head and neck infections, Curr. Infect. Dis. Rep., 4, 211, 10.1007/s11908-002-0081-4 Parente, 2010, Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: a multivariate screening study, Int. J. Food Microbiol., 144, 270, 10.1016/j.ijfoodmicro.2010.10.005 Omar, 2006, Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso, Int. J. Food Microbiol., 112, 44, 10.1016/j.ijfoodmicro.2006.06.014 Fields, 2009, Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int. J. Pept. Protein Res., 35, 161, 10.1111/j.1399-3011.1990.tb00939.x Andrews, 2001, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother., 48, 5, 10.1093/jac/48.suppl_1.5 Tao, 2011, Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus, Carbohydr. Polym., 86, 969, 10.1016/j.carbpol.2011.05.054 Wu, 1999, Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli, Biochemistry, 38, 7235, 10.1021/bi9826299 Molenaar, 1991, Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator, BBA-Gen. Subjects, 1115, 75, 10.1016/0304-4165(91)90014-8 Yan, 2012, Membrane active antitumor activity of NK18, a mammalian NK-lysin-derived cationic antimicrobial peptide, Biochimie, 94, 184, 10.1016/j.biochi.2011.10.005 Wheeler, 1975, Freeze-drying from tertiary butanol in the preparation of endocardium for scanning electron microscopy, Biotech. Histochem., 50, 331 Yamanaka, 2005, Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis, Appl. Environ. Microbiol., 71, 7589, 10.1128/AEM.71.11.7589-7593.2005 Dathe, 1999, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells, BBA-Biomembranes, 1462, 71, 10.1016/S0005-2736(99)00201-1 Hancock, 2002, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiol. Lett., 206, 143, 10.1111/j.1574-6968.2002.tb11000.x Chikindas, 1993, Pediocin PA1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells, Appl. Environ. Microbiol., 59, 3577, 10.1128/AEM.59.11.3577-3584.1993 McAuliffe, 1998, Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential, Appl. Environ. Microbiol., 64, 439, 10.1128/AEM.64.2.439-445.1998 Moll, 1997, Role of transmembrane pH gradient and membrane binding in nisin pore formation, J. Bacteriol., 179, 135, 10.1128/jb.179.1.135-140.1997 Tahara, 1996, Isolation, partial characterization, and mode of action of acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132, Appl. Environ. Microbiol., 62, 892, 10.1128/AEM.62.3.892-897.1996 Zhou, 2008, Mode of action of pentocin 31–1: an antilisteria bacteriocin produced by lactobacillus pentosus from Chinese traditional ham, Food Control, 19, 817, 10.1016/j.foodcont.2007.08.008 Castellano, 2003, Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705, J. of Food Microbiol., 85, 35, 10.1016/S0168-1605(02)00479-8 Wang, 2014, The cooperative behaviour of antimicrobial peptides in model membranes, BBA-Biomembranes, 1838, 2870, 10.1016/j.bbamem.2014.07.002 Kalchayanand, 2004, Viability loss and morphology change of foodborne pathogens following exposure to hydrostatic pressures in the presence and absence of bacteriocins, Int. J. Food Microbiol., 91, 91, 10.1016/S0168-1605(03)00324-6 Rinrada Pattanayaiying, 2014, Catherine N. Cutter, effect of lauric arginate, nisin Z, and a combination against several food-related bacteria, Int. J. Food Microbiol., 188, 135, 10.1016/j.ijfoodmicro.2014.07.013 Silva, 1976, Bacterial mesosomes: real structures of artifacts?, BBA-Biomembranes, 443, 92, 10.1016/0005-2736(76)90493-4 Friedrich, 2000, Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria, Antimicrob. Agents Chemother., 44, 2086, 10.1128/AAC.44.8.2086-2092.2000 Gonzalez, 1996, Bactericidal mode of action of plantaricin C, Appl. Environ. Microbiol., 62, 2701, 10.1128/AEM.62.8.2701-2709.1996 Bendali, 2008, Kinetic of production and mode of action of the lactobacillus paracasei subsp. Paracasei anti-listerial bacteriocin, an Algerian isolate, LWT-food, Sci. Technol., 41, 1784 Cao, 2012, Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo, PLoS One, 7 Kuehn, 2005, Bacterial outer membrane vesicles and the host-pathogen interaction, Genes Dev., 19, 2645, 10.1101/gad.1299905 Lee, 2009, Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles, Proteomics, 9, 5425, 10.1002/pmic.200900338 Mashburn-Warren, 2006, Special delivery: vesicle trafficking in prokaryotes, Mol. Microbiol., 61, 839, 10.1111/j.1365-2958.2006.05272.x