Microstructure evolution of Inconel 625 with 0.4 wt% boron modification during gas tungsten arc deposition

Journal of Alloys and Compounds - Tập 694 - Trang 429-438 - 2017
Y. Tian1, B. Ouyang1, A. Gontcharov2, R. Gauvin1, P. Lowden2, M. Brochu1
1Department of Mining and Materials Engineering, McGill University, 3610 University Street, Wong Building, Montreal, Quebec, H3A 0C5, Canada
2Liburdi Turbine Services, 400 Highway 6 North, Dundas, ON, L9H 7K4, Canada

Tài liệu tham khảo

Cieslak, 1991, The welding and solidification metallurgy of Alloy 625, Weld. J., 70, 49s Valencia, 1997, 753 Xing, 2014, The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, J. Alloys Compd., 593, 110, 10.1016/j.jallcom.2013.12.224 Pavithra, 2016, Microstructural evolution of hydroformed Inconel 625 bellows, J. Alloys Compd., 669, 199, 10.1016/j.jallcom.2016.02.011 Dinda, 2009, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability, Mater. Sci. Eng. A, 509, 98, 10.1016/j.msea.2009.01.009 Thivillon, 2009, Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components, J. Nucl. Mater., 385, 236, 10.1016/j.jnucmat.2008.11.023 Theriault, 2009, Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures, Mater. Sci. Eng. A, 516, 217, 10.1016/j.msea.2009.03.056 Song, 2010, Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding, Mater. Des., 31, 2942, 10.1016/j.matdes.2009.12.020 Ganesh, 2010, Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Mater. Sci. Eng. A, 527, 7490, 10.1016/j.msea.2010.08.034 DuPont, 1996, Solidification of an alloy 625 weld overlay, MMTA, 27, 3612, 10.1007/BF02595452 Banerjee, 2005, Effect of filler alloys on heat-affected zone cracking in preweld heat-treated IN-738 LC gas-tungsten-arc welds, MMTA, 36, 1881, 10.1007/s11661-005-0051-1 Liu, 2014, Laser engineered net shape (LENS) technology for the repair of Ni-Base superalloy turbine components, MMTA, 45, 4454, 10.1007/s11661-014-2397-8 DuPont, 2009 Alexandrov, 2011, Weldability Studies of High-Cr, Ni-Base filler metals for power generation applications, Weld. World, 55, 65, 10.1007/BF03321288 Yang, 2013, Microstructure and tensile properties of nickel-based superalloy K417G bonded using transient liquid-phase infiltration, Mater. Des., 51, 141, 10.1016/j.matdes.2013.04.024 Sowards, 2012, Solidification behavior and weldability of dissimilar welds between a Cr-Free, Ni-Cu welding consumable and type 304L austenitic stainless steel, MMTA, 43, 1209, 10.1007/s11661-011-0961-z A.B. Goncharov, J. Liburdi and P. Lowden, A Ductile Boron Bearing Nickel Based Welding Material, Pending patent application PCT/CA2014/000752, 2014. Tian, 2014, Rationalization of microstructure heterogeneity in INCONEL 718 builds made by the direct laser additive manufacturing process, MMTA, 45, 4470, 10.1007/s11661-014-2370-6 A.B. Goncharov, J. Liburdi, P. Lowden, Welding material for welding of superalloys, Pending patent application CA2850698, 2013. Sidhu, 2007, Microstructural analysis of laser-beam-welded directionally solidified INCONEL 738, MMTA, 38, 858, 10.1007/s11661-006-9063-8 Schneider, 2012, Nat. Methods, 9, 671, 10.1038/nmeth.2089 Drouin, 2007, CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning, 29, 92, 10.1002/sca.20000 Antonsson, 2005, The effect of cooling rate on the solidification of INCONEL 718, Metall Materi. Trans B, 36, 85, 10.1007/s11663-005-0009-0 Cieslak, 1988, A melting and solidification study of alloy 625, MTA Metall. Trans. A, 19, 2319, 10.1007/BF02645056 Kou, 2003, 37 Maglić, 1994, Calorimetric and transport properties of Zircalloy 2, Zircalloy 4, and Inconel 625, Int. J. Thermophys., 15, 741, 10.1007/BF01563797 Xu, 2013, Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process, J. Mater. Sci. Technol., 29, 480, 10.1016/j.jmst.2013.02.010 G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, W.F. Hammetter, INCONEL 718: A solidification diagram Metallurgical Transactions A, 20 2149-2158. Ouyang, 2016, Covalent pathways in engineering h-BN supported graphene, Carbon, 98, 449, 10.1016/j.carbon.2015.10.100 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Hiroto, 2012 Ojo, 2008, Analytical electron microscopy study of boron-rich grain boundary microconstituent in directionally solidified RENE 80 superalloy, MMTA, 39, 2799, 10.1007/s11661-008-9646-7 Sidhu, 2009, Microstructural response of directionally solidified rené 80 superalloy to Gas-tungsten arc welding, MMTA, 40, 150, 10.1007/s11661-008-9700-5 Massalski, 1990 Kurban, 2006, A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel, Scr. Mater., 54, 1053, 10.1016/j.scriptamat.2005.11.055 Cieslak, 1988, A study of the weldability and weld related microstructure of cabot alloy 214, MTA Metall. Trans. A, 19, 657, 10.1007/BF02649280 Ojo, 2006, Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy, MMTA, 37, 421, 10.1007/s11661-006-0013-2 Clyne, 1981, Solute redistribution during solidification with rapid solid state diffusion, MTA Metall. Trans. A, 12, 965, 10.1007/BF02643477 Scheil, 1942, Bemerkungen zur Schichtkristallbildung, Z. Met., 34, 70 Brody, 1966, Trans. AIME, 236, 615 Lal, 2000, Microstructural evolution during the supersolidus liquid phase sintering of nickel-based prealloyed powder mixtures, J. Mater. Sci., 35, 4507, 10.1023/A:1004893618493