Acid volatile sulfide (AVS)

Marine Chemistry - Tập 97 - Trang 141-197 - 2005
David Rickard1, John W. Morse2
1School of Earth, Ocean and Planetary Sciences, Cardiff University, Cardiff CF103YE Wales, UK
2Department of Oceanography, Texas A&M University, College Station, TX 77843, USA

Tài liệu tham khảo

Agaev, 1963, Some electrical properties of pyrite, Izvestiia Akademii Nauk Turkmenskoi SSR, F12, 104 Albert, 1984, Improved techniques for measurement of sulfate reduction and pyrite formation rates in sediments, Transactions-American Geophysical Union, 45, 906 Allen, 1995, Digestion procedures for determining reduced sulfur species in bacterial cultures and in ancient and recent sediments, 243 Allen, 1993, Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments, Environmental Toxicology and Chemistry, 12, 1, 10.1002/etc.5620120812 Aller, R.C., 1977. The influence of macrobenthos on chemical diagenesis of marine sediments. PhD dissertation Thesis, Yale, New Haven, CT. 600 pp. Aller, 1980, Diagenetic processes near the sediment–water interface of Long Island Sound: II. Fe and Mn, Advanced Geophysics, 22, 351, 10.1016/S0065-2687(08)60068-0 Aller, 1988, Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments, Geochimica et Cosmochimica Acta, 52, 751, 10.1016/0016-7037(88)90335-3 Aller, 1986, Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of iron stones, Continental Shelf Research, 6, 263, 10.1016/0278-4343(86)90064-6 Bade, 2000, Behavior of sulfate reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water, FEMS Microbiology Ecology, 32, 215, 10.1111/j.1574-6941.2000.tb00714.x Baes, 1976 Bagander, 1994, In situ determination of the apparent solubility product of amorphous iron sulphide, Applied Geochemistry, 9, 379, 10.1016/0883-2927(94)90060-4 Baudin, 1999, Depositional environment of a Kimmeridgian carbonate “black band” (Akkuyu Fm., SW Turkey), Sedimentology, 46, 589, 10.1046/j.1365-3091.1999.00226.x Benning, 1999, Iron monosulfide stability: experiments with sulfate reducing bacteria, Geochemistry of the Earth's Surface, 5, 429 Benning, 2000, Reaction pathways in the Fe–S system below 100 degrees C, Chemical Geology, 167, 25, 10.1016/S0009-2541(99)00198-9 Berner, 1962, Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure, Journal of Geology, 72, 293, 10.1086/626987 Berner, 1962, Tetragonal iron sulfide, Science, 137, 669, 10.1126/science.137.3531.669-a Berner, 1964, Distribution and diagenesis of sulfur in the sediments from the Gulf of California, Marine Geology, 1, 117, 10.1016/0025-3227(64)90011-8 Berner, 1964, An idealized model of dissolved sulfate distribution in recent sediments, Geochimica et Cosmochimica Acta, 28, 1497, 10.1016/0016-7037(64)90164-4 Berner, 1967, Thermodynamic stability of sedimentary iron sulfides, American Journal of Science, 265, 773, 10.2475/ajs.265.9.773 Berner, 1970, Sedimentary pyrite formation, American Journal of Science, 268, 1, 10.2475/ajs.268.1.1 Berner, 1971 Berner, 1981, A new geochemical classification of sedimentary environments, Journal of Sedimentary Petrology, 51, 359 Berner, 1982, Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance, American Journal of Science, 282, 451, 10.2475/ajs.282.4.451 Berner, 1984, Sedimentary pyrite formation: an update, Geochimica et Cosmochimica Acta, 48, 605, 10.1016/0016-7037(84)90089-9 Berner, 1983, Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory, Geochimica et Cosmochimica Acta, 47, 855, 10.1016/0016-7037(83)90151-5 Berner, 1984, C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, 12, 365, 10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2 Berner, 1979, Authigenic iron sulfides as paleosalinity indicators, Journal of Sedimentary Petrology, 49, 1345 Berry, 1999, Predicting toxicity of sediments spiked with silver, Environmental Toxicology and Chemistry, 18, 40, 10.1002/etc.5620180106 Berzelius, 1845, vol. 2 Biber, 1994, The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals, Geochemica et Cosmochimica Acta, 9, 1999, 10.1016/0016-7037(94)90280-1 Bintrim, 1997, Molecular phylogeny of archaea from soil, Proceedings of the National Academy of Sciences of the United States of America, 94, 277, 10.1073/pnas.94.1.277 Bither, 1968, Transition metal dichalcogenides. High pressure synthesis and correlation of properties, Inorganic Chemistry, 7, 2208, 10.1021/ic50069a008 Boesen, 1988, Pyrite formation in anoxic environments of the Baltic, American Journal of Science, 288, 575, 10.2475/ajs.288.6.575 Böttcher, 2000, Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: evidence from stable isotopes and pyrite textures, Journal of Marine Systems, 25, 299, 10.1016/S0924-7963(00)00023-3 Boulegue, 1977, Dissolution du soufre elementaire dans les solutions aqueuses diluées d'hydrogene sulfure, Comptes Rendus de l'Académie des Sciences Paris, 284 C, 713 Boulegue, 1978, Constantes de formation des ions polysulfures S62−, S52−, et S42− en phase aqueuse, Journal Francais d'Hydrologie, 9 fasc., I.25, 27, 10.1051/water/19780901027 Boursiquot, 2001, The dry oxidation of tetragonal FeS1−x mackinawite, Physics and Chemistry of Minerals, 28, 600, 10.1007/s002690100193 Bragg, 1914, The analysis of crystals by the X-ray spectrometer, Proceedings of the Royal Society A, 89, 468, 10.1098/rspa.1914.0015 Brendel, 1995, Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O−2, and S(-II) in porewaters of marine and fresh-water sediments, Environmental Science & Technology, 29, 751, 10.1021/es00003a024 Browne, 1974, Mackinawite and pyrite in a hot spring deposit, Mohaka River New Zealand, Neues Jahrbuch fur Mineralogie Monatshefte, 10, 468 Bruchert, 1996, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St Andrew Bay, Florida, USA, Geochimica et Cosmochimica Acta, 60, 2325, 10.1016/0016-7037(96)00087-7 Brumbaugh, 1996, Quality control considerations for the determination of acid-volatile sulfide and simultaneously extracted metals in sediments, Environmental Toxicology and Chemistry, 15, 282 Brumbaugh, 1994, Chemical characterization of sediments and pore-water from the Upper Clark-Fork River and Milltown Reservoir, Montana, Environmental Toxicology and Chemistry, 13, 1971, 10.1897/1552-8618(1994)13[1971:CCOSAP]2.0.CO;2 Buffle, 1988 Buffle, 1988, Combining field measurements for speciation in non perturbable waters, 99 Burgess, 1988 Buseck, 1997, Bacterial magnetite and Fe sulfides, 129 Butler, 2000, Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide, Geochimica et Cosmochimica Acta, 64, 2665, 10.1016/S0016-7037(00)00387-2 Butler, 2004, Sulfur isotope partitioning during pyrite formation: implications for the interpretation of sedimentary and hydrothermal pyrite sulfur isotope compositions, Earth and Planetary Science Letters, 228, 495, 10.1016/j.epsl.2004.10.005 Byrne, 1960, Sediments of the Gulf of southern California, Bulletin of the Geological Society of America, 71, 983, 10.1130/0016-7606(1960)71[983:SOTGOC]2.0.CO;2 Canfield, 1989, Reactive iron in marine sediments, Geochimica et Cosmochimica Acta, 53, 619, 10.1016/0016-7037(89)90005-7 Canfield, 1987, Dissolution and pyritization of magnetite in anoxic marine sediments, Geochimica et Cosmochimica Acta, 51, 645, 10.1016/0016-7037(87)90076-7 Canfield, 1992, The reactivity of sedimentary iron minerals toward sulfide, American Journal of Science, 292, 659, 10.2475/ajs.292.9.659 Canfield, 1998, Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria, Limnology and Oceanography, 43, 253, 10.4319/lo.1998.43.2.0253 Castro, 2000, Phylogeny of sulfate-reducing bacteria, FEMS Microbiology Ecology, 31, 1 Chadwell, 1999, Electrochemical evidence for pentasulfide complexes with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+, Aquatic Geochemistry, 5, 29, 10.1023/A:1009611719625 Chadwell, 2001, Electrochemical evidence for metal polysulfide complexes: tetrasulfide (S42−) reactions with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, Electroanalysis, 13, 21, 10.1002/1521-4109(200101)13:1<21::AID-ELAN21>3.0.CO;2-P Chambers, 2000, Iron, sulfur and carbon diagenesis in sediments of Tomales Bay, California, Estuaries, 23, 1, 10.2307/1353220 Chan, 2004, Microbial polysaccharides template assembly of nanocrystal fibers, Science, 303, 1656, 10.1126/science.1092098 Chanton, 1985, The effect of heat and stannous chloride addition on the active distillation of acid volatile sulfide from pyrite-rich marine sediment samples, Biogeochemistry, 1, 375, 10.1007/BF02187379 Cloke, 1963, The geologic role of polysulfides: Part I. The distribution of ionic species in aqueous sodium polysulfide solutions, Geochimica et Cosmochimica Acta, 27, 1265, 10.1016/0016-7037(63)90050-4 Cloke, 1963, The geologic role of polysulfides: Part II. The solubility of acanthite and convellite in sodium polysulfide solutions, Geochimica et Cosmochimica Acta, 27, 1299, 10.1016/0016-7037(63)90051-6 Cooper, 1998, Extractability of metal sulfide minerals in acidic solutions: application to environmental studies of trace metal contamination, Environmental Science & Technology, 32, 1076, 10.1021/es970415t Cornwell, 1987, The characterization of iron sulfide minerals in marine sediments, Marine Chemistry, 22, 193, 10.1016/0304-4203(87)90008-9 Cotton, 1999 Cutter, 1987, Determination of dissolved sulfide and sedimentary sulfur speciation using gas chromatography-photoionization detection, Analytical Chemistry, 59, 717, 10.1021/ac00132a008 Davison, 1980, A critical comparison of the measured solubilities of ferrous sulphide in natural waters, Geochimica et Cosmochimica Acta, 44, 803, 10.1016/0016-7037(80)90261-6 Davison, 1991, The solubility of iron sulfides in synthetic and natural-waters at ambient-temperature, Aquatic Sciences, 53, 309, 10.1007/BF00877139 Davison, 1980, Determination of the solubility of ferrous sulfide in a seasonally anoxic basin, Limnology and Oceanography, 25, 153, 10.4319/lo.1980.25.1.0153 Davison, 1991, Distribution of dissolved iron in sediment pore waters at submillimeter resolution, Nature, 352, 323, 10.1038/352323a0 Davison, 1999, Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants, Aquatic Sciences, 61, 23, 10.1007/s000270050050 de Leeuw, 1990, Organic sulfur compounds and other biomarkers as indicator of paleosalinity, vol. 429, 417 de Medicis, 1970, Cubic FeS, a metastable iron sulfide, Science, 170, 1191, 10.1126/science.170.3963.1191 de Medicis, 1970, Une nouvelle forme de sulfure de fer, Revue de Chimie Minerale, 7, 723 Dekkers, 2000, Magnetic properties of hydrothermally synthesized greigite (Fe3S4): II. High- and low-temperature characteristics, Geophysical Journal International, 141, 809, 10.1046/j.1365-246x.2000.00129.x Dell, 1972, An occurrence of greigite in Lake Superior sediments, American Mineralogist, 57, 1303 Delong, 1994, High abundance of archaea in Antarctic marine picoplankton, Nature, 371, 695, 10.1038/371695a0 Doss, 1912, Melnikovit, ein neues Eisenbisulfid, und seine Bedeuting fur Genesis der Kieslagerstatten, Zeitschrift fur Praktische Geologie, 20, 453 Dos Santos, 1992, Reductive dissolution of iron(III) hydroxides by hydrogen sulfide, Langmuir, 8, 1671, 10.1021/la00042a030 Doyle, 1968, Identification and solubility of iron sulfide in anaerobic lake sediment, American Journal of Science, 266, 980, 10.2475/ajs.266.10.980 Dyrssen, 1988, Sulfide complexation in surface seawater, Marine Chemistry, 24, 143, 10.1016/0304-4203(88)90045-X Echt, 1981, Magic numbers for sphere packings—experimental verification in free xenon clusters, Physical Review Letters, 47, 1121, 10.1103/PhysRevLett.47.1121 Echt, 1982, Magic numbers in mass-spectra of Xe, C2F4Cl2 and SF6 clusters, Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 86, 860, 10.1002/bbpc.19820860919 Eglinton, 1994, Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments, Organic Geochemistry, 22, 781, 10.1016/0146-6380(94)90139-2 Eigen, 1965, The kinetics and mechanism of formation of metal complexes, 55 El-Dein, 1989, Some observations on the microdetermination of sulfite, sulfide, and thiosulfate by mercurimetric titration, Microchemical Journal, 39, 126, 10.1016/0026-265X(89)90018-0 Eldridge, 2000, A diagenetic model for sediment–seagrass interactions, Marine Chemistry, 70, 89, 10.1016/S0304-4203(00)00018-9 Ellmer, 1997, On the stoichiometry of the semiconductor pyrite (FeS2), Philosophical Magazine; A. Physics of Condensed Matter. Structure, Defects and Mechanical Properties, 75, 1129 Emerson, 1983, The behavior of trace metals in marine anoxic waters: solubility at the oxygen–hydrogen sulfide interface, 579 Evans, 1964, Vallerite and the new iron sulfide, mackinawite, U.S. Geological Survey Professional Paper, 475-D, 64 Farina, 1990, Magnetic iron–sulfur crystals from a magnetotactic microorganism, Nature, 343, 256, 10.1038/343256a0 Fossing, 1990, Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater, Biogeochemistry, 9, 223, 10.1007/BF00000600 François, 1987, A study of sulfur enrichment in the humic fraction of marine sediments during early diagenesis, Geochimica et Cosmochimica Acta, 51, 17, 10.1016/0016-7037(87)90003-2 Fuhrman, 1992, Novel major archaebacterial group from marine plankton, Nature, 356, 148, 10.1038/356148a0 Gagnon, 1995, Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada, Geochimica et Cosmochimica Acta, 59, 2663, 10.1016/0016-7037(95)00163-T Giggenbach, 1971, Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide, Inorganic Chemistry, 10, 1333, 10.1021/ic50101a002 Giggenbach, 1972, Optical spectra and equilibrium distribution of polysulfide ions in aqueous solutions at 20 °C, Inorganic Chemistry, 11, 1201, 10.1021/ic50112a009 Goldhaber, 1974, The sulfur cycle, 569 Goldhaber, 1980, Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California, Marine Chemistry, 9, 95, 10.1016/0304-4203(80)90063-8 Goldhaber, 1977, Sulfate reduction diffusion and bioturbation in Long Island Sound sediments: report to FOAM group, American Journal of Science, 277, 193, 10.2475/ajs.277.3.193 Grimes, 2001, Understanding fossilization: experimental pyritization of plants, Geology, 29, 123, 10.1130/0091-7613(2001)029<0123:UFEPOP>2.0.CO;2 Grønvold, 1962, Heat capacities and thermodynamic functions of iron disulfide (pyrite), iron diselenide and nickel diselenide from 5 to 3500 K. The estimation of standard entropies of transition metal chalcogenides, Inorganic Chemistry, 1, 36, 10.1021/ic50001a009 Harmandas, 1998, Crystal growth of pyrite in aqueous solutions: inhibition by organophosphorus compounds, Langmuir, 14, 1250, 10.1021/la970354c Hartler, 1967, Rates of sulfur dissolution in aqueous sodium sulfide, I&EC Process Design and Development, 6, 398, 10.1021/i260024a002 Hartgers, 1997, Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds, Geochimica et Cosmochimica Acta, 61, 4769, 10.1016/S0016-7037(97)00279-2 Helz, 1992, Multinuclearity of aqueous cooper and zinc bisulfide complexes: an EXAFS investigation, Geochimica et Cosmochimica Acta, 57, 15, 10.1016/0016-7037(93)90464-8 Henneke, 1997, Sulfur speciation in anoxic hypersaline sediments from the Eastern Mediterranean, Geochimica Cosmochimica Acta, 61, 307, 10.1016/S0016-7037(96)00355-9 Herbert, 1998, Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria, Chemical Geology, 144, 87, 10.1016/S0009-2541(97)00122-8 Hershberger, 1996, Wide diversity of Crenarchaeota, Nature, 384, 420, 10.1038/384420a0 Heywood, 1990, Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria, Naturwissenschaften, 77, 536, 10.1007/BF01139266 Hilton, 1990, Greigite and the magnetic properties of sediments, Limnology and Oceanography, 35, 509, 10.4319/lo.1990.35.2.0509 Hilton, 1986, Magnetic and chemical characterisation of a diagenetic magnetic mineral formed in the sediments of productive lakes, Chemical Geology, 56, 325, 10.1016/0009-2541(86)90012-4 Hilton, 1986, Iron mineralogy in sediments—a Mossbauer study, Geochimica et Cosmochimica Acta, 50, 2147, 10.1016/0016-7037(86)90069-4 Horiuchi, 1971, Electron beam heating transformation of mackinawite (FeS) to greigite (Fe3S4), Zeitschrift fur Anorganische und Allgemeine Chemie, 386, 196 Horiuchi, 1970, Synthese von Greigit aus Mackinawit und amorphen Schwefel durch Elektronenstrahlen, Die Naturwissenschaften, 57, 670, 10.1007/BF00598794 Horiuchi, 1974, Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4), Journal of Crystal Growth, 25, 624, 10.1016/0022-0248(74)90392-3 Howarth, 1979, Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism, Science, 203, 49, 10.1126/science.203.4375.49 Howarth, 1983, Sulfate reduction in the salt marshes at Sapelo island, Georgia, Limnology and Oceanography, 28, 70, 10.4319/lo.1983.28.1.0070 Howarth, 1984, Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO4−2 reduction measurements, Geochimica et Cosmochimica Acta, 48, 1807, 10.1016/0016-7037(84)90034-6 Howarth, 1984, Pyrite formation and the measurement of sulfate reduction in salt marsh sediments, Limnology and Oceanography, 29, 598, 10.4319/lo.1984.29.3.0598 Howarth, 1979, Sulfate reduction in a New England salt marsh, Limnology and Oceanography, 24, 999, 10.4319/lo.1979.24.6.0999 Huber, 1997, Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions, Science, 276, 245, 10.1126/science.276.5310.245 Hurtgen, 1999, Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: examples from Effingham Inlet, Orca Basin, and the Black Sea, American Journal of Science, 299, 556, 10.2475/ajs.299.7-9.556 Issatchenko, 1912, Uber die Ablagerung von schwefligem Eisen in den Bakterien, Bulletin du Jardin Imperial Botanique de St.-Petersburg, 140 Jedwab, 1967, Minéralization en greigite de débris végétaux d'une vase récente (Grote Geul), Bulletin de la Société Belge de Géologie, de Paleontology et d'hydrologie, 76, 349 Jones, 1976, Metal accumulation with particular reference to dissimilatory sulphate-reducing bacteria, Zeitschrift für Allgemeine Mikrobiologie, 16, 425, 10.1002/jobm.3630160603 Jørgensen, 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnology and Oceanography, 22, 814, 10.4319/lo.1977.22.5.0814 Jørgensen, 1999, Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles, FEMS Microbiology Ecology, 28, 301, 10.1016/S0168-6496(98)00122-6 Kamyshny, 2004, Equilibrium distribution of polysulfide ions in aqueous solutions at 25 °C: a new approach for the study of polysulfide equilibria, Environmental Science & Technology, 38, 6633, 10.1021/es049514e Kaplan, 1963, The distribution and isotopic abundance of sulfur in recent marine sediments off Southern California, Geochimica et Cosmochimica Acta, 27, 297, 10.1016/0016-7037(63)90074-7 Kashefi, 2003, Extending the upper temperature limit for life, Science, 301, 934, 10.1126/science.1086823 Kobayashi, 1972, Iron sulfides in sediment cores from the Sea of Japan and their geophysical implications, Earth and Planetary Science Letters, 16, 200, 10.1016/0012-821X(72)90190-2 Kohnen, 1991, Identification and geochemical significance of cyclic di- and trisulphide with linear and acyclic isoprenoid carbon skeleton in immature sediments, Geochimica et Cosmochimica Acta, 55, 3685, 10.1016/0016-7037(91)90067-F Kok, 2000, Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates, Geochimica et Cosmochimica Acta, 64, 2689, 10.1016/S0016-7037(00)00382-3 Koltoff, 1952 Kornicker, W.A., 1988. Interactions of divalent cations with pyrite and mackinawite in seawater and NaCl solutions. PhD dissertation Thesis, Texas A&M University, 158 pp. Kornicker, 1991, Interactions of divalent cations with the surface of pyrite, Geochimica et Cosmochimica Acta, 55, 2159, 10.1016/0016-7037(91)90094-L Kostka, 1994, Partitioning and speciation of solid-phase iron in salt-marsh sediments, Geochimica et Cosmochimica Acta, 58, 1701, 10.1016/0016-7037(94)90531-2 Kostka, 1995, Seasonal cycling of Fe in salt marsh sediments, Biogeochemistry, 29, 159, 10.1007/BF00000230 Kostka, 1995, Dissolution and reduction of magnetite by bacteria, Environmental Science & Technology, 29, 2535, 10.1021/es00010a012 Kostka, 1996, Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1, Clays and Clay Minerals, 44, 522, 10.1346/CCMN.1996.0440411 Kostka, 1999, Respiration and dissolution of iron(III) containing clay minerals by bacteria, Environmental Science & Technology, 33, 3127, 10.1021/es990021x Kostka, 1999, The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals, Geochimica et Cosmochimica Acta, 63, 3705, 10.1016/S0016-7037(99)00199-4 Kostka, 2002, Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms, Applied Environmental Microbiology, 68, 6256, 10.1128/AEM.68.12.6256-6262.2002 Krekeler, 1997, A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov., Archives of Microbiology, 167, 369, 10.1007/s002030050457 Krupp, 1994, Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite, European Journal of Mineralogy, 6, 265, 10.1127/ejm/6/2/0265 Kullerud, 1959, Pyrite stability relations in the Fe–S system, Economic Geology, 54, 533, 10.2113/gsecongeo.54.4.533 Kuovo, 1963, A tetragonal iron sulfide, American Mineralogist, 48, 511 Langmuir, 1996 Lasorsa, 1996, A comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment, Marine Chemistry, 52, 211, 10.1016/0304-4203(95)00074-7 Leck, 1988, Determination of reduced sulfur compounds in aqueous solutions using gas chromatography flame photometric detection, Analytical Chemistry, 60, 1680, 10.1021/ac00168a011 Lein, 1978, Diagenetic Mackinawite (greigite) and Pyrite in Sediments of the Trans-Pacific Profile and the Gulf Of California, Doklady of the Academy of Sciences of the USSR. Earth Science Sections, 238, 167 Lennie, 1996, Spectroscopic studies of iron sulfide formation and phase relations at low temperatures, 117 Lennie, 1995, Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS, Mineralogical Magazine, 59, 677, 10.1180/minmag.1995.059.397.10 Lennie, 1997, Transformation of mackinawite to greigite: an in situ X-ray powder diffraction and transmission electron microscope study, American Mineralogist, 82, 302, 10.2138/am-1997-3-408 Lin, 1991, Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments, American Journal of Science, 291, 55, 10.2475/ajs.291.1.55 Lin, 2000, Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments, Continental Shelf Research, 20, 619, 10.1016/S0278-4343(99)00088-6 Lonergan, 1996, Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria, Journal of Bacteriology, 178, 2402, 10.1128/jb.178.8.2402-2408.1996 Lord, 1982, A selective and precise method for pyrite determination in sedimentary materials, Journal of Sedimentary Petrology, 52, 664, 10.1306/212F7FF4-2B24-11D7-8648000102C1865D Lovley, 1991, Dissimilatory Fe(III) and Mn(IV) reduction, Microbiological Reviews, 55, 259, 10.1128/MMBR.55.2.259-287.1991 Lovley, 1993, Dissimilatory metal reduction, Annual Review of Microbiology, 47, 263, 10.1146/annurev.mi.47.100193.001403 Lovley, 1995, Microbial reduction of iron, manganese and other metals, Advances in Agronomy, 5, 175, 10.1016/S0065-2113(08)60900-1 Lovley, 2000, Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface, Hydrogeology Journal, 8, 77, 10.1007/PL00010974 Lovley, 1995, Deep subsurface microbial processes, Reviews of Geophysics, 33, 365, 10.1029/95RG01305 Lovley, 1988, Novel mode of microbial energy-metabolism—organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese, Applied and Environmental Microbiology, 54, 1472, 10.1128/AEM.54.6.1472-1480.1988 Luther, 1987, Pyrite oxidation and reduction: molecular orbital theory considerations, Geochimica et Cosmochimica Acta, 51, 3193, 10.1016/0016-7037(87)90127-X Luther, 1990, The frontier-molecular-orbital theory approach in geochemical processes, 173 Luther, 1991, Pyrite synthesis via polysulfide compounds, Geochimica et Cosmochimica Acta, 55, 2839, 10.1016/0016-7037(91)90449-F Luther, 1993, Voltammetric characterization of iron(II) sulfide complexes in laboratory solutions and in marine waters and porewaters, Environmental Science & Technology, 27, 1154, 10.1021/es00043a015 Luther, 2005, Metal sulfide cluster complexes and their biogeochemical importance in the environment, Journal of Nanoparticle Research, 7, 389, 10.1007/s11051-005-4272-4 Luther, 1992, Seasonal iron cycling in the salt-marsh sedimentary environment—the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively, Marine Chemistry, 40, 81, 10.1016/0304-4203(92)90049-G Luther, 1996, Determination of metal (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by voltammetric methods, Environmental Science and Technology, 30, 671, 10.1021/es950417i Luther, 1998, Simultaneous measurement of O−2, Mn, Fe, I-, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode, Limnology and Oceanography, 43, 325, 10.4319/lo.1998.43.2.0325 Luther, 1999, In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(−2), and pH in porewaters, Environmental Science and Technology, 33, 4352, 10.1021/es9904991 Luther, 1999, Evidence for aqueous clusters as intermediates during zinc sulfide formation, Geochimica et Cosmochimica Acta, 63, 3159, 10.1016/S0016-7037(99)00243-4 Luther, 2001, Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters, Journal of Environmental Monitoring, 3, 61, 10.1039/b006499h Luther, 2001, Chemical speciation drives hydrothermal vent ecology, Nature, 410, 813, 10.1038/35071069 Luther, 2002, Aqueous copper sulfide clusters as intermediates during copper sulfide formation, Environmental Science Technology, 36, 394, 10.1021/es010906k Luther, 2003, Iron and sulfur chemistry in a stratified lake: evidence for iron-rich sulfide complexes, Aquatic Geochemistry, 9, 87, 10.1023/B:AQUA.0000019466.62564.94 Lyons, 1997, Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea, Geochimica et Cosmochimica Acta, 61, 3367, 10.1016/S0016-7037(97)00174-9 Mann, 1990, Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature, 343, 258, 10.1038/343258a0 Manning, 1979, Mossbauer spectral studies of pyrite, ferric and high-spin ferrous distributions in sulfide-rich sediments from Moira Lake, Ontario, Canadian Mineralogist, 17, 111 Manning, 1979, Mossbauer spectral studies of the diagenesis of iron in a sulphide-rich sediment core, Nature, 280, 134, 10.1038/280134a0 Marnette, 1993, Pyrite formation in two freshwater systems in the Netherlands, Geochimica et Cosmochimica Acta, 57, 4165, 10.1016/0016-7037(93)90313-L Maronny, 1959, Constants de dissociation de l'hydrogene sulfure, Electrochimica Acta, 1, 58, 10.1016/0013-4686(59)80009-8 Methe, 2003, Genome of Geobacter sulfurreducens: metal reduction in subsurface environments, Science, 302, 1967, 10.1126/science.1088727 Meyer, 1958, Corrosion of mild steel in H2S environments, Corrosion, 14, 109 Meysman, 2003, Reactive transport in surface sediments: II. Media: an object-oriented problem-solving environment for early diagenesis, Computers & Geosciences, 29, 301, 10.1016/S0098-3004(03)00007-4 Middelburg, 1991, Organic carbon, sulfur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia, Geochimica et Cosmochimica Acta, 55, 815, 10.1016/0016-7037(91)90344-5 Millero, 1989, Oxidation of H2S with H2O2 in natural waters, Environmental Science & Technology, 23, 209, 10.1021/es00179a012 Minz, 1999, Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia, Applied and Environmental Microbiology, 65, 4659, 10.1128/AEM.65.10.4659-4665.1999 Mongenot, 1996, Trace elements as paleoenvironmental markers in strongly mature hydrocarbon source rocks: the Cretaceous la Luna Formation of Venezuela, Sedimentary Geology, 103, 23, 10.1016/0037-0738(95)00078-X Mongenot, 2000, Microbial mat development and iron deficiency: intertwined key factors in the formation of organic and sulfur-rich deposits, Bulletin de la Societe Géologique de France, 171, 23 Morse, 1999, Sulfides in sandy sediments: new insights on the reactions responsible for sedimentary pyrite formation, Aquatic Geochemistry, 5, 75, 10.1023/A:1009620021442 Morse, 1995, What determines sedimentary C/S ratios?, Geochimica et Cosmochimica Acta, 59, 1073, 10.1016/0016-7037(95)00024-T Morse, 1987, Acid volatile sulfides and pyrite in recent anoxic marine sediments, Marine Chemistry, 22, 55, 10.1016/0304-4203(87)90048-X Morse, 2004, Chemical dynamics of sedimentary acid volatile sulfide, Environmental Science & Technology, 38, 131A, 10.1021/es040447y Morse, 1987, The chemistry of hydrogen sulfide and iron sulfide systems in natural waters, Earth-Science Reviews, 24, 1, 10.1016/0012-8252(87)90046-8 Mullet, 2002, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochimica et Cosmochimica Acta, 66, 829, 10.1016/S0016-7037(01)00805-5 Murowchick, 1986, Formation of cubic FeS, American Mineralogist, 71, 1243 Murray, 1895, On chemical changes which take place in the composition of the sea water associated with blue muds on the floor of the ocean, Transactions of the Royal Society of Edinburgh, 37, 481, 10.1017/S0080456800032701 Murray, J., Renard, A.F., 1891. Blue muds. Report on the Scientific Results of the Exploring Voyage of H.M.S. Challenger (1873 1876). 295 pp. Neal, 2001, Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria, Geochimica et Cosmochimica Acta, 65, 223, 10.1016/S0016-7037(00)00537-8 Nealson, 1990, Iron reduction by bacteria: a potential role in the genesis of banded iron formations, American Journal of Science, 290-A, 34 Nealson, 1994, Iron and manganese in anaerobic respiration—environmental significance, physiology, and regulation, Annual Review of Microbiology, 48, 311, 10.1146/annurev.mi.48.100194.001523 Neretin, 2004, Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea, Geochimica et Cosmochimica Acta, 68, 2081, 10.1016/S0016-7037(03)00450-2 Nuhfer, 1979, Association of kaolinite with pyritic framboids, Journal of Sedimentary Petrology, 49, 321 Oenema, 1990, Sulfate reduction in fine-grained sediments in the eastern Scheldt, southwest Netherlands, Biogeochemistry, 9, 53, 10.1007/BF00002717 Oertel, 1999, Growth of n-type polycrystalline pyrite (FeS2) films by metalorganic chemical vapour deposition and their electrical characterization, Journal of Crystal Growth, 199, 1205, 10.1016/S0022-0248(98)01074-4 Ostoumov, 1953, Different forms of combined sulfur in sediments of the Black Sea, Akademiya Nauk SSSR Instituta Okeanologii Trudy, 7, 70 Panutrakul, 2001, Seasonal variations in sediment sulfur cycling in the Ballastplaat mudflat, Belgium, Estuaries, 24, 257, 10.2307/1352949 Parkes, 1994, Deep bacterial biosphere in Pacific-ocean sediments, Nature, 371, 410, 10.1038/371410a0 Passier, 1997, Early diagenesis and sulfur speciation in sediments of the Oman Margin, northwestern Arabian Sea, Deep-Sea Research, 44, 1361, 10.1016/S0967-0645(97)00014-3 Polushkina, 1963, Melnikovite as a mineral species, Zapiski Vserossijskogo Mineralogičeskogo Obŝestva, 92, 547 Posfai, 1998, Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions, American Mineralogist, 83, 1469, 10.2138/am-1998-11-1235 Posfai, 2001, Crystal-size distributions and possible biogenic origin of Fe sulfides, European Journal of Mineralogy, 13, 691, 10.1127/0935-1221/2001/0013-0691 Poulton, 2002, The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition, American Journal of Science, 302, 774, 10.2475/ajs.302.9.774 Pye, 1981, Marsh rock formed by iron sulfide and siderite cementation in salt marsh sediments, Nature, 294, 650, 10.1038/294650a0 Pye, 1984, SEM analysis of siderite cements in intertidal marsh sediments, Norfolk, England, Marine Geology, 56, 1, 10.1016/0025-3227(84)90002-1 Pyzik, 1981, Sedimentary iron monosulfides: kinetics and mechanisms of formation, Geochimica et Cosmochimica Acta, 45, 687, 10.1016/0016-7037(81)90042-9 Raiswell, 1996, Rates of reaction between silicate iron and dissolved sulfide in Peru Margin sediments, Geochimica et Cosmochimica Acta, 60, 2777, 10.1016/0016-7037(96)00141-X Raiswell, 1988, Degree of pyritisation as a paleoenvironmental indicator of bottom-water oxygenation, Journal of Sedimentary Petrology, 58, 812 Raiswell, 1993, A simple 3-dimensional model of diffusion-with-precipitation applied to localized pyrite formation in framboids, fossils and detrital iron minerals, Marine Geology, 113, 89, 10.1016/0025-3227(93)90151-K Ramdohr, 1969 Ramsing, 1993, Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes, Applied and Environmental Microbiology, 59, 3840, 10.1128/AEM.59.11.3840-3849.1993 Rancourt, 2001, Mineralogy of a natural As-rich hydrous ferric oxide coprecipitate formed by mixing of hydrothermal fluid and seawater: implications regarding surface complexation and color banding in ferrihydrite deposits, American Mineralogist, 86, 834, 10.2138/am-2001-0707 Rickard, 1969, The chemistry of iron sulfide formation at low temperatures, Stockholm Contributions in Geology, 20, 67 Rickard, 1969, The microbiological formation of iron sulphides, Stockholm Contributions in Geology, 20, 49 Rickard, 1974, Kinetics and mechanism of the sulfidation of goethite, American Journal of Science, 274, 941, 10.2475/ajs.274.8.941 Rickard, 1975, Kinetics and mechanisms of pyrite formation at low temperatures, American Journal of Science, 275, 636, 10.2475/ajs.275.6.636 Rickard, 1989, Experimental concentration–time curves for the iron(II) sulphide precipitation process in aqueous solutions and their interpretations, Chemical Geology, 78, 315, 10.1016/0009-2541(89)90066-1 Rickard, 1995, Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms, Geochimica et Cosmochimica Acta, 59, 4367, 10.1016/0016-7037(95)00251-T Rickard, 1997, Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 degrees C: the rate equation, Geochimica et Cosmochimica Acta, 61, 115, 10.1016/S0016-7037(96)00321-3 Rickard, 1997, Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 degrees C: the mechanism, Geochimica et Cosmochimica Acta, 61, 135, 10.1016/S0016-7037(96)00322-5 Rickard, 1995, Chemistry of iron sulfides in sedimentary environments, 168 Rickard, 1999, Voltammetric evidence for soluble FeS complexes in anoxic estuarine muds, Estuaries, 22, 693, 10.2307/1353056 Rickard, 2001, A novel iron sulphide mineral switch and its implications for Earth and planetary science, Earth and Planetary Science Letters, 189, 85, 10.1016/S0012-821X(01)00352-1 Risatti, 1994, Community structure of a microbial mat—the phylogenetic dimension, Proceedings of the National Academy of Sciences of the United States of America, 91, 10173, 10.1073/pnas.91.21.10173 Roberts, 1993, Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand, Earth and Planetary Science Letters, 115, 257, 10.1016/0012-821X(93)90226-Y Robie, R.A., Hemingway, B.S., Fisher, J.R., 1978. Thermodynamic properties of minerals and related substances at 298.15k and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geologic Survey Bulletin No. 1452. 264 pp. Rozan, 2002, Voltammetric evidence suggesting Ag speciation is dominated by sulfide complexation in river water, 371 Rozan, 2000, Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers, Nature, 406, 879, 10.1038/35022561 Rozan, 2000, Quantifying elemental sulfur (S−0), bisulfide (HS−) and polysulfides (S−x(2−)) using a voltammetric method, Analytica Chimica Acta, 415, 175, 10.1016/S0003-2670(00)00844-8 Rozan, 2003, Determination of Pb complexation in oxic and sulfidic waters using pseudovoltammetry, Environmental Science & Technology, 37, 3845, 10.1021/es034014r Sass, 1997, Vertical distribution of sulfate-reducing bacteria at the oxic–anoxic interface in sediments of the oligotrophic Lake Stechlin, FEMS Microbiology Ecology, 22, 245, 10.1111/j.1574-6941.1997.tb00377.x Sass, 1998, Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov., Systematic and Applied Microbiology, 21, 212, 10.1016/S0723-2020(98)80025-8 Sass, 1998, High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment, Archives of Microbiology, 170, 243, 10.1007/s002030050639 Sass, 2002, Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients, FEMS Microbiology Ecology, 40, 47 Schippers, 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochimica et Cosmochimica Acta, 66, 85, 10.1016/S0016-7037(01)00745-1 Schoonen, 1988, An approximation of the second dissociation constant for H2S, Geochimica et Cosmochimica Acta, 52, 649, 10.1016/0016-7037(88)90326-2 Schoonen, 1991, Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes, Geochimica et Cosmochimica Acta, 55, 3491, 10.1016/0016-7037(91)90050-F Schulz, 1999, Dense populations of a giant sulfur bacterium in Namibian shelf sediments, Science, 284, 493, 10.1126/science.284.5413.493 Schwarzenbach, 1960, Die Aciditat der Sulfane und die Zusammensetzung Polysulfidlosungen, Helvetia Chemica Acta, 43, 1365, 10.1002/hlca.19600430521 Shoesmith, 1980, The formation of ferrous monosulfide polymorphs during the corrosion or iron by aqueous hydrogen sulfide at 21 °C, Journal of the Electrochemical Society, 127, 1007, 10.1149/1.2129808 Sinninghe Damste, 1990, Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research, Advances in Organic Geochemistry, Organic Geochemistry, 16, 1077, 10.1016/0146-6380(90)90145-P Sinninghe Damsté, 1989, The occurrence and identification of series of organic sulfur compounds in oils and sediment extracts: II. Their presence from hypersaline and non-hypersaline paleoenvironments and possible application as source, paleoenvironmental and maturity indicators, Geochimica et Cosmochimica Acta, 53, 1323, 10.1016/0016-7037(89)90066-5 Skinner, 1964, Greigite, the thiospinel of iron: a new mineral, American Mineralogist, 49, 543 Snowball, 1988, The occurrence of greigite in sediment from Loch Lomond, Journal of Quaternary Science, 3, 121, 10.1002/jqs.3390030203 Sørensen, 1987, Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn–Fe–S geochemistry, Geochimica et Cosmochimica Acta, 51, 1883, 10.1016/0016-7037(87)90339-5 Spender, 1972, The magnetic properties and Mossbauer spectra of synthetic samples of Fe3S4, Canadian Journal of Physics, 50, 2313, 10.1139/p72-306 Stanjek, 1994, Comparison of pedogenic and sedimentary greigite by X-ray diffraction and Mossbauer spectroscopy, Clays and Clay Minerals, 42, 451, 10.1346/CCMN.1994.0420411 Stanjek, 1994, Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil, European Journal of Soil Science, 45, 97, 10.1111/j.1365-2389.1994.tb00490.x Stetter, 1988, Archaeoglobus-Fulgidus gen-nov, sp-nov—a new taxon of extremely thermophilic archaebacteria, Systematic and Applied Microbiology, 10, 172, 10.1016/S0723-2020(88)80032-8 Suits, 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments, Chemical Geology, 163, 219, 10.1016/S0009-2541(99)00114-X Suleimenov, 1997, A spectrophotometric study of hydrogen sulphide ionisation in aqueous solutions to 350 °C, Geochimica et Cosmochimica Acta, 61, 5187, 10.1016/S0016-7037(97)00291-3 Sweeney, 1973, Pyrite framboid formation: laboratory synthesis and marine sediments, Economic Geology, 68, 618, 10.2113/gsecongeo.68.5.618 Takeno, 1970, Metastable cubic iron sulfide—with special reference to mackinawite, American Mineralogist, 55, 1639 Teder, 1971, The equilibrium between elemental sulfur and aqueous polysulfide solutions, Acta Chemica Scandinavica, 25, 1722, 10.3891/acta.chem.scand.25-1722 Tegelaar, 1989, A reappraisal of kerogen formation, Geochimica et Cosmochimica Acta, 53, 3103, 10.1016/0016-7037(89)90191-9 Thamdrup, 1994, Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark, Geochimica et Cosmochimica Acta, 58, 5115, 10.1016/0016-7037(94)90298-4 Theberge, B., 1999. Investigations of Metal–Sulfide Complexes and Clusters: A Multimethod Approach. PhD thesis. University of Delaware. 209 pp. Theberge, 1997, Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfide solutions, Aquatic Geochemistry, 3, 191, 10.1023/A:1009648026806 Thode-Anderson, 1989, Sulfate reduction and the formation of 35S-labeled FeS, FeS2 and S0 in coastal marine sediments, Limnology and Oceanography, 34, 793, 10.4319/lo.1989.34.5.0793 Thomas, 1998, Formation of secondary iron–sulfur phases during the growth of polycrystalline iron pyrite (FeS2) thin films by MOCVD, Journal of Materials Science. Materials in Electronics, 9, 61, 10.1023/A:1008888801424 Tossell, 1981, Pyrite, marcasite, and arsenopyrite type minerals: crystal chemical and structural principles, Physics and Chemistry of Minerals, 7, 177, 10.1007/BF00307263 Toulmin, 1964, Thermodynamic study of pyrite and pyrrhotite, Geochemica et Cosmochimica Acta, 28, 1903, 10.1016/0016-7037(64)90083-3 Tribovillard, 1992, Étude à haute résolution d'un cycle du carbone organique de roches kimméridgiennes du Yorkshire (Grande-Bretagne): minéralogie et géochimie (résultats préliminaires), Comptes Rendus de l'Académie des Sciences Paris, 314, 923 Tribovillard, 1994, Sulfur incorporation of lipidic organic matter in reactive-iron deficient environments: a possible enhancement for the storage of hydrogen-rich organic matter, Comptes Rendus de l'Académie des Sciences Paris, 319, 1199 Turner, 1981, The equilibrium speciation of dissolved components in freshwater and seawater at 25 °C and 1 atm pressure, Geochimica et Cosmochimica Acta, 45, 855, 10.1016/0016-7037(81)90115-0 Tuttle, 1993, Sedimentary sulfur geochemistry of the Paleogene green river formation, western USA: implications for interpreting depositional and diagenetic processes in saline alkaline lakes, Geochimica et Cosmochimica Acta, 57, 3023, 10.1016/0016-7037(93)90291-4 Vairavamurthy, 1995, Sulfur transformations in early diagenetic sediments from the Bay of Concepcion, off Chile, 38 van der Zee, 2003, Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments, Geology, 31, 993, 10.1130/G19924.1 van Kaam-Peters, 1997, Characterisation of an extremely organic sulfur-rich, 150 Ma old carbonaceous rock: palaeoenvironmental implications, Organic Geochemistry, 27, 371, 10.1016/S0146-6380(97)00082-X Vaughan, 1978 Vaughan, 1971, Mossbauer studies of some sulfide minerals, Journal of Inorganic Chemistry, 33, 741 Vaughan, 1981, Electronic-structure of thiospinel minerals—results from MO calculations, American Mineralogist, 66, 1250 Vazquez, 1989, Effect of metals on the rate of the oxidation of H2S in seawater, Geophysical Research Letters, 16, 1363, 10.1029/GL016i012p01363 Volkov, 1961, Iron sulfides, their interdependence and transformation in the Black Sea bottom sediments, Akademiya Nauk SSSR Instituta Okeanologii Trudy, 50, 68 Wada, 1977, The synthesis of greigite from a polysulfide solution at about 100 °C, Bulletin of the Chemical Society of Japan, 50, 2615, 10.1246/bcsj.50.2615 Wakeham, 1995, Organic sulfur compounds formed during early diagenesis in Black Sea sediments, Geochimica et Cosmochimica Acta, 59, 521, 10.1016/0016-7037(94)00361-O Walker, 1997, Deactivation of pyrophoric iron sulfides, Industrial and Engineering Chemistry Research, 36, 3662, 10.1021/ie960575y Wang, 1996, Pyrite formation under conditions approximating those in anoxic sediments: I. Pathway and morphology, Marine Chemistry, 52, 99, 10.1016/0304-4203(95)00082-8 Ward, 1970, The structure and properties of some iron sulphides, Review of Pure and Applied Chemistry, 175, 175 Watson, 2000, Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria, Journal of Magnetism and Magnetic Materials, 214, 13, 10.1016/S0304-8853(00)00025-1 Werne, 2000, Timing of early diagenetic sulfurization of organic matter: a precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela, Geochimica et Cosmochimica Acta, 64, 1741, 10.1016/S0016-7037(99)00366-X Westrich, 1983 Widdel, 1992, The dissimilatory sulfate- and sulfur-reducing bacteria, 583 Wieder, 1985, An evaluation of wet chemical methods for quantifying sulfur fractions in fresh-water wetland peat, Limnology and Oceanography, 30, 1109, 10.4319/lo.1985.30.5.1109 Wieringa, 2000, Detection of abundant sulfate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach, Environmental Microbiology, 2, 417, 10.1046/j.1462-2920.2000.00123.x Wijsman, 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Marine Chemistry, 74, 261, 10.1016/S0304-4203(01)00019-6 Wijsman, 2002, A model for early diagenetic processes in sediments of the continental shelf of the Black Sea, Estuarine, Coastal and Shelf Science, 54, 403, 10.1006/ecss.2000.0655 Wikjord, 1976, Crystallization of pyrite from deoxygenated aqueous sulfide solutions at elevated temperature and pressure, Canadian Mineralogist, 14, 571 Williamson, 1992, Correlation between structure and thermodynamic properties of aqueous sulfur species, Geochimica et Cosmochimica Acta, 56, 3867, 10.1016/0016-7037(92)90002-Z Winogradsky, 1887, Uber Schwefelbacterien, Botanische Zeitung, XLV, 489 Wolthers, 2003, Geochemistry and environmental mineralogy of the iron–sulfur–arsenic system, Geologica Ultraiectina, 225 Wolthers, 2003, The structure of disordered mackinawite, American Mineralogist, 88, 2007, 10.2138/am-2003-11-1245 Wu, 2001, Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific, Science, 293, 847, 10.1126/science.1059251 Zaback, 1992, Isotopic composition and speciation of sulfur in the Miocene Monterey formation, re-evaluation of sulfur reaction during early diagenesis in marine environments, Geochimica et Cosmochimica Acta, 56, 763, 10.1016/0016-7037(92)90096-2 Zhabina, 1978, A method of determination of various sulfur compounds in sea sediments and rocks, 735 Zhang, 1994, Investigation of metal sulfide complexes in sea-water using cathodic stripping square-wave voltammetry, Analytica Chimica Acta, 284, 497, 10.1016/0003-2670(94)85056-9 Zhou, 2003, Chemical forms and extractability of iron in sediments of three contrasting lakes of China and UK, Journal of Environmental Sciences (China), 15, 728