Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae)

Springer Science and Business Media LLC - Tập 90 - Trang 649-658 - 2016
D. A. Sepúlveda1,2, F. Zepeda-Paulo3, C. C. Ramírez3,2, B. Lavandero3, C. C. Figueroa3,2
1Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
2Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the Agroecosystems, Universidad de Talca, Talca, Chile
3Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile

Tóm tắt

Inbreeding frequently reduces the fitness of organisms, but little is known about how this phenomenon can affect the biological control. Host fidelity provides an adaptive advantage to aphid parasitoids, allowing females to find their aphid host more quickly in heterogeneous environments. This trait is mediated by the learning of signals, mainly chemical cues emitted from the host in which parasitoids developed (natal). This article is aimed at studying whether host fidelity can be altered after many generations of inbreeding reproduction in caged laboratory populations, for which host preference and fitness parameters were measured in the parasitoid wasp Aphidius ervi. Also, the effect of the natal/non-natal hosts was studied, using parasitoids originated from the pea aphid (Acyrthosiphon pisum) and the grain aphid (Sitobion avenae). We observed a loss of host fidelity in the studied A. ervi populations, irrespective of their natal aphid host, which contrasts with previous reports showing preference for natal hosts in outbred laboratory populations. The loss of host fidelity is discussed in terms of the origin of populations; the sex ratio was strongly biased toward males and long-time maintenance under laboratory conditions. Our results highlight the need for controlling the genetic diversity of caged parasitoids before they are released into fields, as a long period of inbreeding could negatively affect the biological control.

Tài liệu tham khảo

Antolin MF (1999) A genetic perspective on mating systems and sex ratios of parasitoid wasps. Res Popul Ecol (Kyoto) 41:29–37. doi:10.1007/PL00011979 Antolin MF, Bjorkstena TA, Vaughn TT (2006) Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol Entomol 31:242–254. doi:10.1111/j.1365-2311.2006.00769.x Bates DM (2010) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48 Boivin G, Hance T, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92:1–12. doi:10.4141/cjps2011-045 Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008 Boulton RA, Collins LA, Shuker DM (2015) Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biol Rev 90:599–627. doi:10.1111/brv.12126 Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796. doi:10.1038/nrg2664 Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity (Edinb) 71:421–435. doi:10.1038/hdy.1993.157 Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286 Damiens D, Boivin G (2006) Why do sperm-depleted parasitoid males continue to mate? Behav Ecol 17:138–143. doi:10.1093/beheco/arj009 Daza-Bustamante P, Fuentes-Contreras E, Rodriguez LC, Figueroa CC, Niemeyer HM (2002) Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity. Entomol Exp Appl 104:321–328 De Rijk M, Dicke M, Poelman EH (2013) Foraging behaviour by parasitoids in multiherbivore communities. Anim Behav 85:1517–1528. doi:10.1016/j.anbehav.2013.03.034 Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2004) Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. J Chem Ecol 30:2515–2525. doi:10.1007/s10886-004-7947-x Gandolfi M, Mattiacci L, Dorn S (2003) Mechanisms of behavioral alterations of parasitoids reared in artificial systems. J Chem Ecol 29:1871–1887. doi:10.1023/A:1024854312528 Geden CJ, Smith L, Long SJ, Rutz DA (1992) Rapid deterioration of searching behavior, host destruction, and fecundity of the parasitoid Muscidifurax-Raptor (Hymenoptera, Pteromalidae) in culture. Ann Entomol Soc Am 85:179–187 Giunti G, Canale A, Messing RH et al (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219. doi:10.1016/j.biocontrol.2015.06.007 Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton Grenier S, De Clerq P (2003) Comparison of artificially versus naturally reared natural enemies and their potential use in biological control. In: van Lenteren JC (ed) Quality control and production of biological control agent. CAB International, Wallingford, pp 115–131 Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. doi:10.7717/peerj.616 He XZ, Wang Q (2008) Reproductive strategies of Aphidius ervi Haliday (Hymenoptera: Aphidiidae). Biol Control 45:281–287. doi:10.1016/j.biocontrol.2008.03.003 Henry LM, Gillespie DR, Roitberg BD (2005) Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomol Exp Appl 116:167–174. doi:10.1111/j.1570-7458.2005.00318.x Henry LM, Roitberg BD, Gillespie DR (2008) Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 62:689–699. doi:10.1111/j.1558-5646.2007.00316.x Henry LM, May N, Acheampong S et al (2010) Host-adapted parasitoids in biological control: does source matter? Ecol Appl 20:242–250 Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803. doi:10.1554/02-751 Hothorn TF, Bretz P, Westfall P, Heiberger RM (2008) Multcomp: simultaneous inference in general parametric models. http://CRAN.R-project.org. R package version 1.0-0. Accessed on Oct 2015 Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241 Luna M, Hawkins B (2004) Effects of inbreeding versus outbreeding in Nasonia vitripennis (Hymenoptera: Pteromalidae). Environ Entomol 33:765–775. doi:10.1603/0046-225X-33.3.765 Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696 Ode PJ, Antolin MF, Strand MR (1997) Constrained oviposition and female-biased sex allocation in a parasitic wasp. Oecologia 109:547–555 Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299. doi:10.1098/rspb.2007.1192 Ottoni EB (2000) EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum 32:446–449 Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460 Peccoud J, Bonhomme J, Mahéo F et al (2013) Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes. Insect Sci 21:291–300. doi:10.1111/1744-7917.12083 Peccoud J, Huerta M, Bonhomme J, Laurence C, Outreman Y, Smadja CM, Simon JC (2014) Widespread host-dependent hybrid unfitness in the pea aphid species complex. Evolution 68:2983–2995. doi:10.1111/evo.12478 R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Roush RT (1990) Genetic considerations in the propagation of entomophagous species. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and disease. Plenum Press, New York, pp 373–387 Salin C, Deprez B, Van Bockstaele DR et al (2004) Sex determination mechanism in the hymenopteran parasitoid Aphidius rhopalosiphi De Stefani-Peres (Braconidae: Aphidiinae). Belg J Zool 134:15–21 Schwörer U, Völkl W (2001) Foraging behavior of Aphidius ervi (Haliday) (Hymenoptera: Braconidae: Aphidiinae) at different spatial scales: resource utilization and suboptimal weather conditions. Biol Control 21:111–119. doi:10.1006/bcon.2001.0931 Sepúlveda DA, Zepeda-Paulo F, Ramírez CC, Lavandero B, Figueroa CC (2016) Diversity, frequency and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci. doi:10.1111/1744-7917.12313 Starý P (1995) The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch Entomol Zeitschrift 42:113–138 Storeck A, Poppy GM, Emden HF, Powell W (2000) The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol Exp Appl 97:41–46. doi:10.1046/j.1570-7458.2000.00714.x Stouthamer R, Luck RF, Werren JH (1992) Genetics of sex determination and the improvement of biological control using parasitoids. Environ Entomol 21:427–435 Therneau TM (1999) A package for survival analysis in statistical technical report. Mayo Foundation. http://www.mayo.edu/hsr/people/therneau/survival Tien NSH, Sabelis MW, Egas M (2014) Inbreeding depression and purging in a haplodiploid: gender-related effects. Heredity (Edinb) 114:327–332. doi:10.1038/hdy.2014.106 Torvik MM (1931) Genetic evidence for diploidsm of biparental males in Habrobracon. Biol Bull 61:139–156 Tumlinson J, Lewis W, Vet L (1993) How parasitic wasps find their hosts. Sci Am 268:100–106 Unruh TR, White W, Gonzalez D, Gordh G, Luck RF (1983) Heterozygosity and effective size in laboratory populations of Aphidius ervi [Hym.: Aphidiidae]. Entomophaga 28:245–258 Van Lenteren JC (2003) Quality control and production of biological control agents. CABI, Cambridge Vayssade C, De Fazio C, Quaglietti B et al (2014) Inbreeding depression in a parasitoid wasp with single-locus complementary sex determination. PLoS One 9:1–8. doi:10.1371/journal.pone.0097733 Völkl W (1994) Searching at different spatial scales: the foraging behaviour of the aphid parasitoid Aphidius rosae in rose bushes. Oecologia 100:177–183. doi:10.1007/BF00317144 Weinbrenner M, Völkl W (2001) Oviposition behaviour of the aphid parasitoid, Aphidius ervi: are wet aphids recognized as host? Entomol Exp Appl 103:51–59. doi:10.1023/A:1019841517467 Werren JH (1993) The evolution of inbreeding in haplodiploid organisms. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. Theoretical and empirical perspectives. The University of Chicago Press, Chicago Zepeda-Paulo F, Ortiz-Martínez S, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999. doi:10.1111/eva.12081 Zepeda-Paulo F, Lavandero B, Mahéo F et al (2015) Does sex-biased dispersal account for the lack of geographic and host-associated differentiation in introduced populations of an aphid parasitoid? Ecol Evol 5:2149–2161. doi:10.1002/ece3.1504 Zhou Y, Gu H, Dorn S (2007) Effects of inbreeding on fitness components of Cotesia glomerata, a parasitoid wasp with single-locus complementary sex determination (sl-CSD). Biol Control 40:273–279. doi:10.1016/j.biocontrol.2006.11.002