Interaction of CARD14, SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai–Tibetan Plateau
Tài liệu tham khảo
Leon-Velarde, 2005, Consensus statement on chronic and subacute high altitude diseases, High Alt. Med. Biol., 6, 147, 10.1089/ham.2005.6.147
Wu, 2005, Chronic mountain sickness on the Qinghai-Tibetan plateau, Chin. Med. J., 118, 161
Xu, 2011, A genome-wide search for signals of high-altitude adaptation in Tibetans, Mol. Biol. Evol., 28, 1003, 10.1093/molbev/msq277
Peng, 2011, Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas, Mol. Biol. Evol., 28, 1075, 10.1093/molbev/msq290
Yi, 2010, Sequencing of 50 human exomes reveals adaptation to high altitude, Science, 329, 75, 10.1126/science.1190371
Beall, 2010, Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders, Proc. Natl. Acad. Sci. U. S. A., 107, 11459, 10.1073/pnas.1002443107
Bigham, 2010, Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data, PLoS Genet., 6, e1001116, 10.1371/journal.pgen.1001116
Mejia, 2005, Genetic association analysis of chronic mountain sickness in an Andean high-altitude population, Haematologica, 90, 13
Espinoza, 2014, Vascular endothelial growth factor-A is associated with chronic mountain sickness in the Andean population, High Alt. Med. Biol., 15, 146, 10.1089/ham.2013.1121
Zhou, 2013, Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders, Am. J. Hum. Genet., 93, 452, 10.1016/j.ajhg.2013.07.011
Cole, 2014, Genetic variation in SENP1 and ANP32D as predictors of chronic mountain sickness, High Alt. Med. Biol., 15, 497, 10.1089/ham.2014.1036
Buroker, 2010, Genetic associations with mountain sickness in Han and Tibetan residents at the Qinghai–Tibetan Plateau, Clin. Chim. Acta, 411, 1466, 10.1016/j.cca.2010.05.043
Buroker, 2012, EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai–Tibetan Plateau, Blood Cells Mol. Dis., 49, 67, 10.1016/j.bcmd.2012.04.004
Kiely, 1995, Acute hypoxic pulmonary vasoconstriction in man is attenuated by type I angiotensin II receptor blockade, Cardiovasc. Res., 30, 875, 10.1016/0008-6363(95)00129-8
Leon-Velarde, 2008, Gene expression in chronic high altitude diseases, High Alt. Med. Biol., 9, 130, 10.1089/ham.2007.1077
Droma, 2008, Adaptation to high altitude in Sherpas: association with the insertion/deletion polymorphism in the angiotensin-converting enzyme gene, Wilderness Environ. Med., 19, 22, 10.1580/06-WEME-OR-073.1
Bigham, 2008, Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua, High Alt. Med. Biol., 9, 167, 10.1089/ham.2007.1066
Tanimoto, 2003, Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance, Carcinogenesis, 24, 1779, 10.1093/carcin/bgg132
Jiang, 2012, Gene expression profiling of high altitude polycythemia in Han Chinese migrating to the Qinghai–Tibetan Plateau, Mol. Med. Rep., 5, 287
Chakrabarti, 2010, A polymorphism in the CYP1B1 promoter is functionally associated with primary congenital glaucoma, Hum. Mol. Genet., 19, 4083, 10.1093/hmg/ddq309
Jiang, 2014, Chronic mountain sickness in Chinese Han males who migrated to the Qinghai–Tibetan Plateau: application and evaluation of diagnostic criteria for chronic mountain sickness, BMC Public Health, 14, 701, 10.1186/1471-2458-14-701
Chen, 2014, An EPAS1 haplotype is associated with high altitude polycythemia in male Han Chinese at the Qinghai–Tibetan Plateau, Wilderness Environ. Med., 25, 392, 10.1016/j.wem.2014.06.003
Jiang, 2014, Mitochondrial DNA 10609T promotes hypoxia-induced increase of intracellular ROS and is a risk factor of high altitude polycythemia, PLoS One, 9, e87775, 10.1371/journal.pone.0087775
Chen, 2014, Renin-angiotensin-aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease, Toxicol. Appl. Pharmacol., 279, 95, 10.1016/j.taap.2014.05.011
Moore, 2006, A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility, J. Theor. Biol., 241, 252, 10.1016/j.jtbi.2005.11.036
Lou, 2007, A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence, Am. J. Hum. Genet., 80, 1125, 10.1086/518312
Rimoldi, 2012, Systemic vascular dysfunction in patients with chronic mountain sickness, Chest, 141, 139, 10.1378/chest.11-0342
Leon-Velarde, 2010, Chronic mountain sickness and the heart, Prog. Cardiovasc. Dis., 52, 540, 10.1016/j.pcad.2010.02.012
Xu, 2015, EPAS1 gene polymorphisms are associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau, Wilderness Environ. Med., 26, 288, 10.1016/j.wem.2015.01.002
Buroker, 2013, VEGFA SNPs and transcriptional factor binding sites associated with high altitude sickness in Han and Tibetan Chinese at the Qinghai–Tibetan Plateau, J. Physiol. Sci., 63, 183, 10.1007/s12576-013-0257-8
Cole, 2014, Genetic variation in SENP1 and ANP32D as predictors of chronic mountain sickness, High Alt. Med. Biol., 15, 497, 10.1089/ham.2014.1036
Droma, 2008, Two hypoxia sensor genes and their association with symptoms of acute mountain sickness in Sherpas, Aviat. Space Environ. Med., 79, 1056, 10.3357/ASEM.2361.2008
Hennis, 2010, The lack of associations between alleles at the hypoxia-inducible factor 1A C1772T loci and responses to acute hypoxia, Wilderness Environ. Med., 21, 219, 10.1016/j.wem.2010.05.001
Yu, 2010, SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis, J. Exp. Med., 207, 1183, 10.1084/jem.20092215
Maloney, 2000, Plasma vascular endothelial growth factor in acute mountain sickness, Chest, 118, 47, 10.1378/chest.118.1.47
Gao, 2005, Hypoxia-induced expression of HIF-1alpha and its target genes in umbilical venous endothelial cells of Tibetans and immigrant Han, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 141, 93
Piperno, 2011, Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project, Blood, 117, 2953, 10.1182/blood-2010-08-299859
Murphy, 2013, The HSP70 family and cancer, Carcinogenesis, 34, 1181, 10.1093/carcin/bgt111
Julian, 2013, Sleep-disordered breathing and oxidative stress in preclinical chronic mountain sickness (excessive erythrocytosis), Respir. Physiol. Neurobiol., 186, 188, 10.1016/j.resp.2013.01.016
Scudiero, 2014, The three CARMA sisters: so different, so similar: a portrait of the three CARMA proteins and their involvement in human disorders, J. Cell. Physiol., 229, 990, 10.1002/jcp.24543
Qin, 2014, Variant analysis of CARD14 in a Chinese Han population with psoriasis vulgaris and generalized pustular psoriasis, J. Investig. Dermatol., 134, 2994, 10.1038/jid.2014.269
Gonzalez-Lara, 2013, SNP rs11652075 in the CARD14 gene as a risk factor for psoriasis (PSORS2) in a Spanish cohort, DNA Cell Biol., 32, 601, 10.1089/dna.2013.2109
Jordan, 2012, PSORS2 is due to mutations in CARD14, Am. J. Hum. Genet., 90, 784, 10.1016/j.ajhg.2012.03.012
Jordan, 2012, Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappaB, in psoriasis, Am. J. Hum. Genet., 90, 796, 10.1016/j.ajhg.2012.03.013
Fuchs-Telem, 2012, Familial pityriasis rubra pilaris is caused by mutations in CARD14, Am. J. Hum. Genet., 91, 163, 10.1016/j.ajhg.2012.05.010
Hayden, 2008, Shared principles in NF-kappaB signaling, Cell, 132, 344, 10.1016/j.cell.2008.01.020
Vallabhapurapu, 2009, Regulation and function of NF-kappaB transcription factors in the immune system, Annu. Rev. Immunol., 27, 693, 10.1146/annurev.immunol.021908.132641
Belaiba, 2007, Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells, Mol. Biol. Cell, 18, 4691, 10.1091/mbc.E07-04-0391
Scortegagna, 2008, HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling, Blood, 111, 3343, 10.1182/blood-2007-10-115758
Taylor, 2008, Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation, J. Physiol., 586, 4055, 10.1113/jphysiol.2008.157669
Eltzschig, 2011, Hypoxia and inflammation, N. Engl. J. Med., 364, 656, 10.1056/NEJMra0910283
Li, 2011, Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis, Exp. Hematol., 39, 37, 10.1016/j.exphem.2010.10.006
Matsusaka, 1993, Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8, Proc. Natl. Acad. Sci. U. S. A., 90, 10193, 10.1073/pnas.90.21.10193
Scudiero, 2011, Alternative splicing of CARMA2/CARD14 transcripts generates protein variants with differential effect on NF-kappaB activation and endoplasmic reticulum stress-induced cell death, J. Cell. Physiol., 226, 3121, 10.1002/jcp.22667