Electric modulus and interfacial polarization in composite polymeric systems

Journal of Materials Science - Tập 33 - Trang 2027-2037 - 1998
G. M Tsangaris1, G. C Psarras1, N Kouloumbi1
1Chemical Engineering Department, Materials Science and Engineering Section, National Technical University, Athens, Greece

Tóm tắt

The applicability of the electric modulus formalism is investigated on a Debye-type relaxation process, the interfacial polarization or Maxwell–Wagner–Sillars effect. Electric modulus, which has been proposed for the description of systems with ionic conductivity and related relaxation processes, presents advantages in comparison to the classical approach of the real and imaginary part of dielectric permittivity. In composite polymeric materials, relaxation phenomena in the low-frequency region are attributed to the heterogeneity of the systems. For the investigation of these processes through electric modulus formalism, hybrid composite systems consisting of epoxy resin–metal powder–aramid fibres were prepared with various filler contents and their dielectric spectra were recorded in the frequency range 10 Hz–10 MHz in the temperature interval 30–150°C. The Debye, Cole–Cole, Davidson–Cole and Havriliak–Negami equations of dielectric relaxation are expressed in the electric modulus form. Correlation between experimental data and the various expressions produced, shows that interfacial polarization in the systems examined is, mostly, better described by the Davidson–Cole approach and only in the system with the higher heterogeneity must the Havriliak–Negami approach be used. © 1998 Chapman and Hall

Tài liệu tham khảo

J. C. Maxwell, “Electricity and Magnetism” Vol. 1 (Clarendon, Oxford, 1892) p. 452. K. W. Wagner, Arch. Electrotech. 2 (1914) 371. R. W. Sillars, J. Inst. Elect. Eng. 80 (1937) 378. B. K. P. Scaife, “Principles of Dielectrics” (Clarendon, Oxford, 1989), p. 291. L. K. H. van Beck, in “Progress in Dielectrics”, Vol. 7, edited by J. B. Birks, Heywood Books, Cleveland, OH, 1967) p. 69. A. R. von Hippel, “Dielectrics and Waves” (Wiley, New York, 1954) p. 228. C. J. F. BÖettcher and P. Bordewijk, “Theory of Electric Polarization” Vol II (Elsevier, Amsterdam, 1978) p. 486. P. Hedvig, “Dielectric Spectroscopy of Polymers” (Adam Hilger, Bristol, 1977) p. 293. N. G. MćCrum, B. E. Read and G. Williams, “Anelastic and Dielectric Effects in Polymeric Solids” (Wiley, London, 1967) pp. 108–111. P. B. Macedo, C. T. Moynihan and R. Bose, Phys. Chem. Glasses 13 (1972) 171. A. A. Bakr and A. M. North, Eur. Polym. Sci. 13 (1977) 799. H. W. Starkweather and P. Avakian, J. Polym. Sci. B Polym. Phys. 30 (1992) 637. Show-an Chen and Chien-Shiun Liao, Macromolecules 26 (1993) 2810. I. M. Hodge and A. Eisenberg, J. Non-Cryst. Solids 27 (1978) 441. F. S. Howell, R. A. Bose, P. B. Macedo and C. T. Moynihan, J. Phys. Chem. 78 (1974) 639. R. P. Sheldom, “Composite Polymeric Materials” (Applied Science, London, 1982) p. 74. E. I. Du Pont De Nemours & Co. (Inc.), Product data sheet, 1986. G. M. Tsangaris, G. C. Psarras and A. J. Kontopoulos, J. Non-Cryst. Solids 131–133 (1991) 1164. K. S. Cole and R. H. Cole, J. Chem. Phys. 9 (1941) 341. C. J. F. BÖettcher and P. Bordewijk, “Theory of Electric Polarization”, Vol. II (Elsevier, Amsterdam, 1978) p. 62. R. H. Boyd, in “Electrical Methods in Methods of Experimental Physics”, Vol. 16, part C, “Polymers-Physical Properties”, edited by R. A. Fava (Academic Press, New York, 1980) p. 390. D. W. Davidson and R. H. Cole, J. Chem. Phys. 18 (1950) 1417. S. Havriliak and S. Negami, J. Polym. Sci. C 14 (1966) 99. V. Baziard, S. Breton, S. Toutain and A. Gourdenne, Eur. Polym. J. 24 (1988), 521. “ASM Engineering Materials Handbook”, Vol. I, “Composites” (ASM International, Cleveland, OH, 1987), p. 361 G. M. Tsangaris, N. Kouloumbi and S. Kyvelidis, J. Mater. Chem. Phys. 44 (1996) 245. D. R. Day, Y. J. Lewis, H. L. Lee and S. D. Senturia, J. Adhesion 18 (1985) 73. Y. Baziard, S. Breton, S. Toutain and A. Gourdenne, Eur. Polym. J. 24 (1988) 633. P. Hedvig, “Dielectric Spectroscopy of Polymers” (Adam Hilger, Bristol, 1977) p. 285. G. Perrier and A. Bergeret, J. Appl. Phys. 77 (1995) 2651. K. Lichtenecker and K. RÖther, Phys. Z. 32 (1931) 255. G. M. Tsangaris and G. C. Psarras, Adv. Compos. Lett. 4 (1995) 125. P. D. Aldrich, R. L. McGee, S. Yalvac, J. E. Bonekamp and S. W. Thuow, J. Appl. Phys. 62 (1987) 4504. A.S. Nowick and B. S. Lim, J. Non-Cryst. Solids 172–174 (1994) 1389.