Characterization of the induction period in tricalcium silicate hydration by nuclear resonance reaction analysis

Journal of Materials Research - Tập 16 - Trang 687-693 - 2001
R. A. Livingston1, J. S. Schweitzer2, C. Rolfs3, H.-W. Becker2, S. Kubsky3
1Office of Infrastructure R&D, Federal Highway Administration, McLean, USA
2Department of Physics, University of Connecticut, Storrs, USA
3Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany

Tóm tắt

Nuclear resonance reaction analysis has been applied for the first time to measure the development of the hydrogen depth profile in the early stages of hydration of tricalcium silicate using the 1H(15N,αγ)12C reaction. The surface layer had an H concentration and thickness consistent with a few unit cells (1.1 nm) of tobermorite-like material. The inner regions exhibited diffusion-controlled growth with time until the hydrogen concentration approaches that of the surface layer at 4.25 ± 0.07 h. This event marked the end of the induction period and the onset of the rapid hydration reaction period.

Tài liệu tham khảo

H.L. Le Chatelier, Experimental Researches on the Constitution of Hydraulic Mortars (McGraw Publishing Company, New York, 1887). H.F.W. Taylor, Cement Chemistry, 2nd ed. (Thomas Telford, London, United Kingdom, 1997). R.A. Livingston, D. Neumann, A.J. Allen, and J.J. Rush, in Neutron Scattering in Materials Science II, edited by B. Wuensch, D. Neumann, and T. Russell (Mater. Res. Soc. Symp. Proc. 376, Pittsburgh, PA, 1996), p. 459. S. FitzGerald, D. Neumann, J. Rush, D. Bentz, and R. Livingston, Chem. Mater. 10(1), 397 (1998). K. Scrivener, in Microstructural Development During Hydration of Cement, edited by L.J. Struble and P.W. Brown (Mater. Res. Soc. Symp. Proc. 85, Pittsburgh, PA, 1987), p. 39. P. Meredith, A.M. Donald, and K. Luke, J. Mater. Sci. 30, 1921 (1995). E. Henderson and J.E. Bailey, J. Mater. Sci. 28, 3681 (1993). D. Viehland, J-F. Li, L-J. Yuan, and Z. Xu, J. Am. Ceram. Soc. 79, 1731 (1996). L.D. Mitchell, M. Prica, and J.D. Birchall, J. Mater. Sci. 31, 4207 (1996). D. Menetrier, I. Jawed, T.S. Sun, and J. Skalny, Cem. Concr. Res. 9, 473 (1979). J.R. Bird and J.S. Williams, Ion Beams for Material Analysis (Academic Press, Sydney, Australia, 1989). G. Amsel and W.A. Lanford, Ann. Rev. Nucl. Part. Sci. 34, 435 (1984). W.A. Lanford, Nucl. Instr. Methods B66, 65 (1992). H.W. Becker, M. Bahr, M. Berheide, L. Borucki, M. Buschmann, C. Rolfs, G. Roters, S. Schmidt, W.H. Schulte, G.E. Mitchell, and J.S. Schweitzer, Z. Phys. A351, 453 (1995). R.H. Doremus, Glass Science, 2nd ed. (John Wiley & Sons, New York, 1994). M. Schreiner, M. Grasserbauer, and P. March, Fresenius Z. Anal. Chem. 331, 428 (1988). S. Brunauer, D.L. Kantro, and L.E. Copeland, J. Am. Chem. Soc. 80, 761 (1958). J.F. Young, H.S. Tong, and R.L. Berger, J. Am. Ceram. Soc. 60, 193 (1977). H.P. Trautvetter, K. Elix, C. Rolfs, and K. Brand, Nucl. Instr. Methods 161, 173 (1979). S. Wüstenbecker, H.W. Becker, C. Rolfs, H.P. Trautvetter, K. Brand, G.E. Mitchell, and J.S. Schweitzer, Nucl. Instr. Methods A 256, 9 (1987). M. Mehrhoff, M. Aliotta, I.J.R. Baumvol, H.W. Becker, M. Berheide, L. Borucki, J. Domke, F. Gorris, S. Kubsky, N. Piel, G. Roters, C. Rolfs, and W.H. Schulte, Nucl. Instr. Methods B 132, 671 (1997). L. Borucki, H.W. Becker, F. Gorris, S. Kubsky, W.H. Schulte, and C. Rolfs, Eur. J. Phys. A 5, 327 (1999). P.V. Vandiver and W.D. Kingery, Bull. Am. Ceram. Soc. 63, 612 (1984). G. Shani, Radiation Dosimetry Instrumentation and Methods (CRC Press, Boca Raton, FL, 1991). P.V. Danckwerts, Trans. Faraday Soc. 46, 300 (1950). R.W. Douglas and T.M.M. El-Shamy, J. Am. Ceram. Soc. 50, 1 (1967). H.F.W. Taylor and A.B. Turner, Cem. Concr. Res. 17, 613 (1987). L.W. Dent-Glasser, Cem. Concr. Res. 9, 515 (1979).