Study of temperature dependent behavior of h-BN nanoflakes based deep UV photodetector
Tài liệu tham khảo
Mu, 2017, Photodetectors based on sensitized two-dimensional transition metal dichalcogenides - a review, J. Mater. Res., 32, 4115, 10.1557/jmr.2017.402
Wang, 2018, 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection, Chem. Soc. Rev., 47, 6296, 10.1039/C8CS00255J
Chang, 2020, Ultra-broadband, high speed, and high-quantum-efficiency photodetectors based on black phosphorus, ACS Appl. Mater. Interfaces, 12, 1201, 10.1021/acsami.9b13472
Wu, 2006, Colossal ultraviolet photoresponsivity of few-layer black phosphorus jing, ACS Nano, 9, 8070, 10.1021/acsnano.5b01922
Xie, 2018, Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability, Adv. Funct. Mater., 28, 1
Amani, 2018, Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors, ACS Nano, 12, 7253, 10.1021/acsnano.8b03424
Xing, 2018, Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV-vis photodetector, ACS Photonics, 5, 621, 10.1021/acsphotonics.7b01211
Hu, 2013, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates, Nano Lett., 13, 1649, 10.1021/nl400107k
Sorifi, 2020, High-temperature performance of a GaSe nanosheet-based broadband photodetector, ACS Appl. Electron. Mater., 2, 670, 10.1021/acsaelm.9b00770
Li, 2018, High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability, Adv. Funct. Mater., 28, 1, 10.1002/adfm.201705237
Jiang, 2015, Recent progress on fabrications and applications of boron nitride nanomaterials: a review, J. Mater. Sci. Technol., 31, 589, 10.1016/j.jmst.2014.12.008
Cassabois, 2016, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photonics, 10, 262, 10.1038/nphoton.2015.277
Liu, 2018, High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride, Nanoscale, 10, 5559, 10.1039/C7NR09438H
Song, 2010, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 10, 3209, 10.1021/nl1022139
Li, 2016, Atomically thin boron nitride: unique properties and applications, Adv. Funct. Mater., 26, 2594, 10.1002/adfm.201504606
Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134
Elias, 2019, Direct band-gap crossover in epitaxial monolayer boron nitride, Nat. Commun., 10, 1, 10.1038/s41467-019-10610-5
Li, 2012, Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 10.1063/1.4764533
Cao, 2013, Optoelectronic properties of hexagonal boron nitride epilayers, Quantum Sens. Nanophoton. Devices X, 8631, 863128, 10.1117/12.2009115
Zheng, 2018, Vacuum-ultraviolet photodetection in few-layered h-BN, ACS Appl. Mater. Interfaces, 10, 27116, 10.1021/acsami.8b07189
Aldalbahi, 2015, Development of 2-D boron nitride nanosheets UV photoconductive detectors, IEEE Trans. Electron Devices, 62, 1885, 10.1109/TED.2015.2423253
Rivera, 2017, High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector, Sci. Rep., 7, 2
Burger, 1996, Metal-semiconductor-metal photodetectors, IEEE Potentials, 15, 25, 10.1109/MP.1996.490050
Sze, 1971, Current transport in metal-semiconductor-metal (MSM) structures, Solid State Electron., 14, 1209, 10.1016/0038-1101(71)90109-2
Michaelson, 1977, The work function of the elements and its periodicity, J. Appl. Phys., 48, 4729, 10.1063/1.323539
Tran, 2016, Quantum emission from hexagonal boron nitride monolayers, Nat. Nanotechnol., 11, 37, 10.1038/nnano.2015.242
Averine, 2000, Evaluation of Schottky contact parameters in metal-semiconductor-metal photodiode structures, Appl. Phys. Lett., 77, 274, 10.1063/1.126948
Moun, 2019, Study of photoresponse behavior of high barrier Pd / MoS2 / Pd photodetector study of photoresponse behavior of high barrier Pd / MoS 2 / Pd photodetector manuscript version : accepted manuscript, J. Phys. D. Appl. Phys., 52, 325102, 10.1088/1361-6463/ab1f59
Pratiyush, 2018, Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector, Jpn. J. Appl. Phys., 57, 10.7567/JJAP.57.060313
Tak, 2019, Gamma irradiation effect on performance of β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors for space applications, ECS J. Solid State Sci. Technol., 8, Q3149, 10.1149/2.0291907jss
Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B, 44, 7787, 10.1103/PhysRevB.44.7787
Chang, 2003, The hetero-epitaxial SiCN/Si MSM photodetector for high-temperature deep-UV detecting applications, IEEE Electron Device Lett., 24, 565, 10.1109/LED.2003.816577
Sang, 2013, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors (Switzerland), 13, 10482, 10.3390/s130810482
Miller, 2017, Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation, Appl. Phys. Lett., 111, 10.1063/1.5005797
Monroy, 1998, High-performance GaN p-n junction photodetectors for solar ultraviolet applications, Semicond. Sci. Technol., 13, 1042, 10.1088/0268-1242/13/9/013
Zhao, 2017, An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures, Adv. Funct. Mater., 27, 1, 10.1002/adfm.201700264
Weng, 2011, A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film, IEEE Sens. J., 11, 999, 10.1109/JSEN.2010.2062176
Weng, 2011, A high-responsivity GaN nanowire UV photodetector, IEEE J. Sel. Top. Quantum Electron., 17, 996, 10.1109/JSTQE.2010.2060715
Sze, 2006
Kaushik, 2020, Surface modification of AlN using organic molecular layer for improved deep UV photodetector performance, ACS Appl. Electron. Mater., 2, 739, 10.1021/acsaelm.9b00811
Toda, 2004, Operation at 700°C of 6H-SiC UV sensor fabricated using N+ implantation, Jpn. J. Appl. Physics, Part 2 Lett., 43, 9
Chen, 2012, Analysis of temperature-dependent characteristics of a 4H-SiC metal-semiconductor-metal ultraviolet photodetector, Chin. Sci. Bull., 57, 4427, 10.1007/s11434-012-5494-3