Study of temperature dependent behavior of h-BN nanoflakes based deep UV photodetector

Shuchi Kaushik1, Sahin Sorifi2, Rajendra Singh2,3
1Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
2Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
3Nanoscale Research Facility, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Tài liệu tham khảo

Mu, 2017, Photodetectors based on sensitized two-dimensional transition metal dichalcogenides - a review, J. Mater. Res., 32, 4115, 10.1557/jmr.2017.402 Wang, 2018, 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection, Chem. Soc. Rev., 47, 6296, 10.1039/C8CS00255J Chang, 2020, Ultra-broadband, high speed, and high-quantum-efficiency photodetectors based on black phosphorus, ACS Appl. Mater. Interfaces, 12, 1201, 10.1021/acsami.9b13472 Wu, 2006, Colossal ultraviolet photoresponsivity of few-layer black phosphorus jing, ACS Nano, 9, 8070, 10.1021/acsnano.5b01922 Xie, 2018, Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability, Adv. Funct. Mater., 28, 1 Amani, 2018, Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors, ACS Nano, 12, 7253, 10.1021/acsnano.8b03424 Xing, 2018, Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV-vis photodetector, ACS Photonics, 5, 621, 10.1021/acsphotonics.7b01211 Hu, 2013, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates, Nano Lett., 13, 1649, 10.1021/nl400107k Sorifi, 2020, High-temperature performance of a GaSe nanosheet-based broadband photodetector, ACS Appl. Electron. Mater., 2, 670, 10.1021/acsaelm.9b00770 Li, 2018, High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability, Adv. Funct. Mater., 28, 1, 10.1002/adfm.201705237 Jiang, 2015, Recent progress on fabrications and applications of boron nitride nanomaterials: a review, J. Mater. Sci. Technol., 31, 589, 10.1016/j.jmst.2014.12.008 Cassabois, 2016, Hexagonal boron nitride is an indirect bandgap semiconductor, Nat. Photonics, 10, 262, 10.1038/nphoton.2015.277 Liu, 2018, High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride, Nanoscale, 10, 5559, 10.1039/C7NR09438H Song, 2010, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 10, 3209, 10.1021/nl1022139 Li, 2016, Atomically thin boron nitride: unique properties and applications, Adv. Funct. Mater., 26, 2594, 10.1002/adfm.201504606 Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134 Elias, 2019, Direct band-gap crossover in epitaxial monolayer boron nitride, Nat. Commun., 10, 1, 10.1038/s41467-019-10610-5 Li, 2012, Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers, Appl. Phys. Lett., 101, 10.1063/1.4764533 Cao, 2013, Optoelectronic properties of hexagonal boron nitride epilayers, Quantum Sens. Nanophoton. Devices X, 8631, 863128, 10.1117/12.2009115 Zheng, 2018, Vacuum-ultraviolet photodetection in few-layered h-BN, ACS Appl. Mater. Interfaces, 10, 27116, 10.1021/acsami.8b07189 Aldalbahi, 2015, Development of 2-D boron nitride nanosheets UV photoconductive detectors, IEEE Trans. Electron Devices, 62, 1885, 10.1109/TED.2015.2423253 Rivera, 2017, High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector, Sci. Rep., 7, 2 Burger, 1996, Metal-semiconductor-metal photodetectors, IEEE Potentials, 15, 25, 10.1109/MP.1996.490050 Sze, 1971, Current transport in metal-semiconductor-metal (MSM) structures, Solid State Electron., 14, 1209, 10.1016/0038-1101(71)90109-2 Michaelson, 1977, The work function of the elements and its periodicity, J. Appl. Phys., 48, 4729, 10.1063/1.323539 Tran, 2016, Quantum emission from hexagonal boron nitride monolayers, Nat. Nanotechnol., 11, 37, 10.1038/nnano.2015.242 Averine, 2000, Evaluation of Schottky contact parameters in metal-semiconductor-metal photodiode structures, Appl. Phys. Lett., 77, 274, 10.1063/1.126948 Moun, 2019, Study of photoresponse behavior of high barrier Pd / MoS2 / Pd photodetector study of photoresponse behavior of high barrier Pd / MoS 2 / Pd photodetector manuscript version : accepted manuscript, J. Phys. D. Appl. Phys., 52, 325102, 10.1088/1361-6463/ab1f59 Pratiyush, 2018, Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector, Jpn. J. Appl. Phys., 57, 10.7567/JJAP.57.060313 Tak, 2019, Gamma irradiation effect on performance of β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors for space applications, ECS J. Solid State Sci. Technol., 8, Q3149, 10.1149/2.0291907jss Xu, 1991, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures, Phys. Rev. B, 44, 7787, 10.1103/PhysRevB.44.7787 Chang, 2003, The hetero-epitaxial SiCN/Si MSM photodetector for high-temperature deep-UV detecting applications, IEEE Electron Device Lett., 24, 565, 10.1109/LED.2003.816577 Sang, 2013, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors (Switzerland), 13, 10482, 10.3390/s130810482 Miller, 2017, Graphene-enhanced gallium nitride ultraviolet photodetectors under 2 MeV proton irradiation, Appl. Phys. Lett., 111, 10.1063/1.5005797 Monroy, 1998, High-performance GaN p-n junction photodetectors for solar ultraviolet applications, Semicond. Sci. Technol., 13, 1042, 10.1088/0268-1242/13/9/013 Zhao, 2017, An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures, Adv. Funct. Mater., 27, 1, 10.1002/adfm.201700264 Weng, 2011, A β-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film, IEEE Sens. J., 11, 999, 10.1109/JSEN.2010.2062176 Weng, 2011, A high-responsivity GaN nanowire UV photodetector, IEEE J. Sel. Top. Quantum Electron., 17, 996, 10.1109/JSTQE.2010.2060715 Sze, 2006 Kaushik, 2020, Surface modification of AlN using organic molecular layer for improved deep UV photodetector performance, ACS Appl. Electron. Mater., 2, 739, 10.1021/acsaelm.9b00811 Toda, 2004, Operation at 700°C of 6H-SiC UV sensor fabricated using N+ implantation, Jpn. J. Appl. Physics, Part 2 Lett., 43, 9 Chen, 2012, Analysis of temperature-dependent characteristics of a 4H-SiC metal-semiconductor-metal ultraviolet photodetector, Chin. Sci. Bull., 57, 4427, 10.1007/s11434-012-5494-3