Propagation of structural uncertainty in watershed hydrologic models

Journal of Hydrology - Tập 575 - Trang 66-81 - 2019
A. Gupta1, R.S. Govindaraju1
1School of Civil Engineering, Purdue University, West Lafayette, IN, United States

Tài liệu tham khảo

Abbaspour, 2004, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure, Vadose Zone J., 3, 1340, 10.2136/vzj2004.1340 Ajami, 2007, An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, 10.1029/2005WR004745 Arnold, 1999, Automated methods for estimating baseflow and groundwater recharge from streamflow records, J. Am. Water Resour. Assoc., 35, 411, 10.1111/j.1752-1688.1999.tb03599.x Baldassarre, 2009, Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913, 10.5194/hess-13-913-2009 Berger, 1985 Beven, 2005, On the concept of model structural error, Water Sci. Technol., 52, 167, 10.2166/wst.2005.0165 Beven, 1992, The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279, 10.1002/hyp.3360060305 Brynjarsdóttir, 2014, Learning about physical parameters: the importance of model discrepancy, Inverse Prob., 30, 10.1088/0266-5611/30/11/114007 Bulygina, 2009, Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation, Water Resour. Res., 45, 10.1029/2007WR006749 Chow, 1988 Clark, 2011, Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resour. Res., 10.1029/2010WR009827 Doherty, 2010, A short exploration of structural noise, Water Resour. Res., 10.1029/2009WR008377 Duan, 1992, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015, 10.1029/91WR02985 Gaganis, 2009, Model calibration/parameter estimation techniques and conceptual model error, 10.1007/978-90-481-2636-1_6 Gelman, 1992, Inference from iterative simulation using multiple sequences, Statist. Sci., 7, 457, 10.1214/ss/1177011136 Gómez, 1998, A multivariate generalization of the power exponential family of distributions, Commun. Statist.-Theory Meth., 27, 589, 10.1080/03610929808832115 Götzinger, 2008, Generic error model for calibration and uncertainty estimation of hydrological models, Water Resour. Res., 44, 10.1029/2007WR006691 Gupta, 1980, A representation of an instantaneous unit hydrograph from geomorphology, Water Resour. Res., 16, 855, 10.1029/WR016i005p00855 Højberg, 2005, Model uncertainty – parameter uncertainty versus conceptual models, 177 Kennedy, 2001, Bayesian calibration of computer models, J. Royal Statist. Soc. Series B (Statist. Methodol.), 63, 425, 10.1111/1467-9868.00294 Qiao, L., 2018. Baseflow filter using the recursive digital filter technique (https://www.mathworks.com/matlabcentral/fileexchange/58525-baseflow-filter-using-the-recursive-digital-filter-technique). MATLAB Central File Exchange. Retrieved April 28. Lin, 2012, Accounting for structural error and uncertainty in a model: an approach based on model parameters as stochastic processes, Environ. Modell. Software, 27, 97, 10.1016/j.envsoft.2011.08.015 MacCallum, 2015, Advances in modeling model discrepancy: comment on Wu and Browne (2015), Psychometrika, 80, 601, 10.1007/s11336-015-9452-2 Madsen, 2000, Automatic calibration of a conceptual rainfall–runoff model using multiple objectives, J. Hydrol., 235, 276, 10.1016/S0022-1694(00)00279-1 Montanari, 2008, Estimating the uncertainty of hydrological forecasts: a statistical approach, Water Resour. Res., 44, 10.1029/2008WR006897 Montanari, 2012, A blueprint for process-based modeling of uncertain hydrological systems, Water Resour. Res., 48, 10.1029/2011WR011412 Nearing, 2016, A philosophical basis for hydrological uncertainty, Hydrol. Sci. J., 61, 1666, 10.1080/02626667.2016.1183009 Reichert, 2009, Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters, Water Resour. Res., 45, 10.1029/2009WR007814 Renard, 2010, Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors, Water Resour. Res., 10.1029/2009WR008328 Rodriguez-Iturbe, 2001 Schoups, 2010, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors, Water Resour. Res., 46, 10.1029/2009WR008933 Smith, 2014, Uncertainty quantification: theory, implementation, and applications, Siam Smith, 2015, Modeling residual hydrologic errors with Bayesian inference, J. Hydrol., 528, 29, 10.1016/j.jhydrol.2015.05.051 Sorooshian, 1980, Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: correlated and heteroscedastic error cases, Water Resour. Res., 16, 430, 10.1029/WR016i002p00430 Subbotin, 1923, On the law of frequency of error, Maтeмaтичecкий cбopник, 31, 296 Thiemann, 2001, Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37, 2521, 10.1029/2000WR900405 Thyer, 2009, Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis, Water Resour. Res., 10.1029/2008WR006825 U.S. Geological Survey, 2016. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), accessed: April 10, 2018 and July 12, 2018. United States Geological Survey, 2013. USGS NED n43w088 1/3 arc-second 2013 1 x 1 degree ArcGrid Accessed: April 12, 2018 at http://nationalmap.gov/viewer.html. United States Geological Survey, 2013. USGS NED n43w088 1/3 arc-second 2013 1 x 1 degree ArcGrid Accessed: July 17, 2018 at http://nationalmap.gov/viewer.html. US Army Corps of Engineers. (2006). Hydrologic modeling system.HEC-HMS. User’s manual, version 3.1. 0. Vrugt, 2016, Markov chain Monte Carlo simulation using the DREAM software package: theory, concepts, and MATLAB implementation, Environ. Modell. Software, 75, 273, 10.1016/j.envsoft.2015.08.013 Wilkinson, 2011, Quantifying simulator discrepancy in discrete-time dynamical simulators, J. Agric. Biol. Environ. Statist., 16, 554, 10.1007/s13253-011-0077-3 Williams, 2006, Gaussian Processes for Machine Learning, vol. 2, 4 Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. et al., 2012. NLDAS Primary Forcing Data L4 Hourly 0.125 x 0.125 degree V002, Edited by David Mocko, NASA/GSFC/HSL, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed on Apr-12, 2018 and Jul-23, https://doi.org/2018, 10.5067/6J5LHHOHZHN4. Xia, 2012, Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS- 2): 1. Intercomparison and application of model products, J. Geophys. Res., 117, D03109 Xu, 2017, Quantifying model structural error: efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model, Water Resour. Res., 53, 10.1002/2016WR019831