Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study

Nancy C. Tuchman1,2, Kirk A. Wahtera1,2, Robert G. Wetzel3, James A. Teeri1
1Biological Station, The University of Michigan, Pellston, U.S.A.
2Department of Biology, Loyola University Chicago, Chicago, U. S. A.
3Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, U.S.A

Tóm tắt

Trembling aspen (Populus tremuloides) seedlings were exposed to both elevated (720 ppm; ELEV) and ambient (370 ppm; AMB) concentrations of atmospheric CO2 for a 6-month growing season after which senesced leaves were collected and analyzed for differences in chemical composition. Elevated levels of atmospheric CO2 significantly increased total phenolic compounds, lignin levels, and C:N ratios, while decreasing the concentration of foliar nitrogen. ELEV and AMB leaf aggregates were placed into a headwater stream in the autumn of 1999 for 4 months to assess microbial activity, macroinvertebrate colonization, and leaf decomposition rates. Elevated CO2 significantly reduced 30 day microbial community respiration (−36.8%), and percent leaf mass remaining after 30 and 120 days of stream incubation (−9.4% and −13%, respectively). Low resolution of the experimental design for testing macroinvertebrate responses to altered leaves, including the free movement of macroinvertebrates among leaf aggregates, may explain the lack of treatment effect on invertebrate distribution between AMB and ELEV leaves. Elevated CO2-induced increases in leaf litter total phenolic compounds, lignins, and C:N appear to have negative effects on leaf decomposition, especially in the early stages of the decay process where microorganisms play a dominant role.

Từ khóa


Tài liệu tham khảo

Adams, J. A., N. C. Tuchman & P. A. Moore, 2003. Effects of elevated atmospheric CO2-altered leaf detritus on foraging decisions of the crayfish Orconectes virilis. J. N. Am. Benthol. Soc. (In review). Bezemer, T. M. & T. H. Jones, 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82: 212-222. Boerner, R. E. J. & J. Rebbeck, 1993. Decomposition of hardwood leaves grown under elevated O3and/or CO2. Bull. Ecol. Soc. Am. (Suppl.) 74: 166. Boerner, R. E. J. & J. Rebbeck, 1995. Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2. Plant Soil 170: 149-157. Canhoto, C. & M. A. S. Graca, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial. Ecol. 37: 163-172. Cotrufo, M. F., P. Ineson & A. P. Rowland, 1994. Decomposition of tree leaf litters grown under elevated CO2: effect of litter quality. Plant Soil 163: 121-130. Cotrufo, M. F. & P. Ineson, 1996. Elevated CO2 reduces field decomposition rates of Betula pendula (Roth.) leaf litter. Oecologia 106: 525-530. Cotrufo, M. F., M. J. I. Briones & P. Ineson, 1998. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol. Biochem. 30: 1565-1571. Couteaux, M. M., M. Mousseau, M. L. Celerier & P. Bottner, 1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54-64. Couteaux, M. M., C. Kurz, P. Bottner & A. Raschi, 1999. Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Phys. 19: 301-311. Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Ann. Rev. Ecol. Syst. 10: 147-172. Curtis, P. S. & J. A. Teeri, 1992. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Can. J. For. Res. 22: 1320-1325. Curtis, P. S., D. R. Zak, K. S. Pregitzer, J. Lussenhop & J. A. Teeri, 1996. Linking above-ground and below-ground responses to rising CO2 in northern deciduous forest species. In Koch, G. W. & H. A. Mooney (eds), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego: 41-51. Dean, J. F. D., 1997. Lignin analysis. In Daushek, W. V. (ed.), Methods in Plant Biochemistry and Molecular Biology. CRC Press, Boca Raton. Frederiksen, H. B., R. Ronn & S. Christensen, 2001. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw. Global Change Biol. 7: 313-321. Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807-1817. Irons, J. G., III, M. W. Oswood & J. P. Bryant, 1998. Consumption of leaf detritus by a stream shredder: influence of tree species and nutrient status. Hydrobiologia 160: 53-61. Lambers, H., 1993. Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. Vegetatio 104/105: 263-271. Lindroth, R. L., 1996a. Consequences of elevated atmospheric CO2 for forest insects. In Korner, C. & F. A. Bazzaz (eds), Carbon Dioxide, Populations, and Communities. Academic Press, San Diego, Calif: 347-361. Lindroth, R. L., 1996b. CO2-mediated changes in tree chemistry and tree-Lepidoptera interactions. In Koch, G. W. & H. A. Mooney (eds), Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego, Calif: 105-120. Lindroth, R. L. & K. K. Kinney, 1998. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and Gypsy moth performance. J. Chem. Ecol. 24: 1677-1695. Mellilo, J. M., J. D. Aber & J. F. Muratore, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 6: 3621-626. Minshall, G. W., 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139-149. Nicolai, V., 1988. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75: 575-579. Norby, R. J. & M. F. Cotrufo, 1998. A question of litter quality. Nature 396: 17-18. Norby, R. J., M. F. Cotrufo, P. Ineson, E. G. O'Neill & J. G. Canadell, 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153-165. Ostrofsky, M. L., 1993. Effect of tannins on leaf processing and conditioning rates in aquatic ecosystems: an empirical approach. Can. J. Fish. Aquat. Sci. 50: 1176-1180. Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J. N. Am. Benthol. Soc. 16: 750-759. Otto, C., 1976. Factors affecting the drift of Potamophylax cingulatus (Trichoptera) larvae. Oikos 27: 292-301. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343-368. Rier, S. T., N. C. Tuchman, R. G. Wetzel & J. A. Teeri, 2002. Elevated CO2-induced changes in the chemistry of quaking aspen (Populus tremuloides Michaux) leaf litter: Subsequent mass loss and microbial response in a stream ecosystem. J. N. Am. Benthol. Soc. 21: 16-27. Roth, S., E. P. McDonald & R. L. Lindroth, 1997. Atmospheric CO2 and soil water availability: consequences for tree-insect interactions. Can. J. For. Res. 27: 1281-1290. Schmidt, T. L., J. S. Spencer & R. Bertsch, 1993. Michigan's forests 1993: an analysis. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. Resource Bulletin NC-179. Stout, J., 1989. Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: a theoretical approach. Can. J. Fish. Aquat. Sci. 46: 1097-1106. Strain, B. R. & F. A. Bazzaz, 1983. Terrestrial plant communities. In Lemon, E. R. (ed.), CO2 and Plants (AAAS selected symposium 84). Westview, Boulder: 177-222. Suberkropp, K., G. L. Godshalk & M. J. Klug, 1976. Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720-727. Swain, T. & J. L. Goldstein, 1964. The Quanititative Analysis of Phenolic Compounds. In Pridham, J. B. (ed.), Methods in Polyphenol Compounds. Pergamon Press, Oxford: 131-145. Taylor, B. R., D. Parkinson & W. F. J. Parsons, 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97-104. Tuchman, N. C., R. G. Wetzel, S. T. Rier, K. A. Wahtera & J. A. Teeri, 2002. Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biol. 8: 163-170. Tuchman, N. C., K. A. Wahtera, R. G. Wetzel, N. M. Russo, G. M. Kilbane, L. M. Sasso & J. A. Teeri, 2003. Nutritional quality of leaf detritus altered by elevated atmospheric CO2: Effects on development of mosquito larvae. Freshwat. Biol. (accepted). Walton, O. E. Jr., S. R. Reice & R.W. Andrews, 1997. The effects of density, sediment particle size and velocity on drift of Acroneuria abnormis (Plecoptera). Oikos 28: 291-298. Watson, R. T., L. G. Miera Filho, E. Sanjueza & A. Janetos, 1992. In Houghton, J. T., B. A. Callander & S. K. Varnery (eds), Climate Change. Cambridge Univ. Press, Cambridge: 25-46. Wetzel, R. G. & J. B. Grace, 1983. Atmospheric CO2 enrichment effects on aquatic plants. In Lemon, E. H. (ed.), The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Amer. Assoc. Advanc. Sci., Washington, D.C: 223-280. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd Ed. Springer-Verlag, New York: 325-336. Wetzel, R. G. & N. C. Tuchman, 2003. Effects of CO2 enrichment on the production of humic degradation products, their natural photodegradation, and biological utilization. Limnol. Oceanogr. (Submitted).