Generalised discriminants, deformed Calogero–Moser–Sutherland operators and super-Jack polynomials

Advances in Mathematics - Tập 192 - Trang 341-375 - 2005
A.N. Sergeev1, A.P. Veselov2,3
1Balakovo Institute of Technology and Control, Balakovo 413800, Russia
2Department of Mathematical Sciences, Loughborough University, W233ma, Loughborough, Leicestershire, England LE11 3TU, UK
3Landau Institute for Theoretical Physics, Kosygina 2, Moscow, 117940, Russia

Tài liệu tham khảo

Calogero, 1971, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419, 10.1063/1.1665604 Cayley, 1857, A memoir on the conditions for the existence of given systems of equalities among the roots of an equation, Philos. Trans. Royal Soc. London, CXLVII, 727, 10.1098/rstl.1857.0034 A. Cayley, Collected Mathematical Papers, Vol. II, Cambridge University Press, Cambridge, 1889 (reprinted). Chalykh, 1998, New integrable generalizations of Calogero–Moser quantum problem, J. Math. Phys., 39, 695, 10.1063/1.532347 Chipalkatti, 2003, On equations defining Coincident Root loci, J. Algebra, 267, 246, 10.1016/S0021-8693(03)00336-3 Feigin, 2002, A differential ideal of symmetric polynomials spanned by Jack polynomials at b=−(r−1)/(k+1), Internat. Math. Res. Notices, 23, 1223, 10.1155/S1073792802112050 Feigin, 2003, Quasi-invariants and quantum integrals of the deformed Calogero–Moser systems, Internat. Math. Res. Notices, 46, 2487, 10.1155/S1073792803130826 Gefand, 1994 Ivanov, 2002, Kerov's central limit theorem for the Plancherel measure on Young diagrams M. Kasatani, T. Miwa, A.N. Sergeev, A.P. Veselov, Coincident root loci and Jack and Macdonald polynomials for special values of the parameters, math.QA/0404079. Kerov, 1998, The boundary of the Young graph with Jack edge multipliers, Internat. Math. Res. Notices, 4, 173, 10.1155/S1073792898000154 Knop, 1996, Difference equations and symmetric polynomials defined by their zeros, Internat. Math. Res. Notices, 10, 437 Lapoint, 2000, Determinantal expression and recursion for Jack polynomials, Electron. J. Combin., 7(1), 7 Macdonald, 1995 Okounkov, 1998, (Shifted) Macdonald polynomials, Compositio Math., 112, 147, 10.1023/A:1000436921311 A. Okounkov, On N-point correlations in the log-gas at rational temperature, hep-th/9702001. Okounkov, 1997, Shifted Jack polynomials, binomial formula, and applications, Math. Res. Lett., 4, 69 E. Opdam, Lectures on Dunkl operators, math.RT/9812007. A. Regev, On a class of algebras defined by partitions, math.CO/0210195. Sahi, 1994, The spectrum of certain invariant differential operators associated to a Hermitian symmetric space, Prog. Math., 123, 569 Sergeev, 2001, Superanalogs of the Calogero operators and Jack polynomials, J. Nonlinear Math. Phys., 8, 59, 10.2991/jnmp.2001.8.1.7 Sergeev, 2002, Calogero operator and Lie superalgebras, Theoret. Math. Phys., 131, 747, 10.1023/A:1015968505753 Sergeev, 2004, Deformed quantum Calogero–Moser systems and Lie superalgebras, Comm. Math. Phys., 245, 249, 10.1007/s00220-003-1012-4 Stanley, 1989, Some combinatorial properties of Jack symmetric functions, Adv. Math., 77, 76, 10.1016/0001-8708(89)90015-7 Sutherland, 1971, Exact results for a quantum many-body problem in one dimension, Phys. Rev. A, 4, 2019, 10.1103/PhysRevA.4.2019 Vershik, 1985, Asymptotic theory of characters of the symmetric group, Funct. Anal. Appl., 19, 21, 10.1007/BF01086021 Veselov, 1996, New integrable deformations of quantum Calogero–Moser problem, Russian Math. Surveys, 51, 185, 10.1070/RM1996v051n03ABEH002956 Weyman, 1989, The equations of strata for binary forms, J. Algebra, 122, 244, 10.1016/0021-8693(89)90248-2