On stability issues of the HEOM method

Malte Krug1, Jürgen Stockburger1
1Institute for Complex Quantum Systems and IQST, Ulm University, Ulm, Germany

Tóm tắt

The Hierarchical Equations of Motion (HEOM) method has become one of the cornerstones in the simulation of open quantum systems and their dynamics. It is commonly referred to as a non-perturbative method. Yet, there are certain instances, where the necessary truncation of the hierarchy of auxiliary density operators seems to introduce errors which are not fully controllable. We investigate the nature and causes of this type of critical error both in the case of pure decoherence, where exact results are available for comparison, and in the spin-boson system, a full system-reservoir model. We find that truncating the hierarchy to any finite size can be problematic for strong coupling to a dissipative reservoir, in particular when combined with an appreciable reservoir memory time.

Tài liệu tham khảo

R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, vol. 286 (Springer, Berlin, 1987) H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002), p.625 U. Weiss, Quantum Dissipative Systems, No. 13 in Series in Modern Condensed Matter Physics, 3rd edn. (World Scientific, Singapore, 2008), p.507 L. Diósi, N. Gisin, W.T. Strunz, Non-Markovian quantum state diffusion. Phys. Rev. A 58, 1699 (1998). https://doi.org/10.1103/PhysRevA.58.1699 W.T. Strunz, L. Diósi, N. Gisin, T. Yu, Quantum trajectories for Brownian motion. Phys. Rev. Lett. 83, 4909–4913 (1999) J.T. Stockburger, H. Grabert, Non-Markovian quantum state diffusion. Chem. Phys. 268, 249–256 (2001). https://doi.org/10.1016/S0301-0104(01)00307-X J.T. Stockburger, H. Grabert, Exact \(c\)-number representation of non-Markovian quantum dissipation. Phys. Rev. Lett. 88, 170407 (2002). https://doi.org/10.1103/PhysRevLett.88.170407 J.T. Stockburger, Exact propagation of open quantum systems in a system-reservoir context. EPL (Europhysics Letters) 115(4), 40010 (2016). https://doi.org/10.1209/0295-5075/115/40010 Y. Tanimura, R. Kubo, Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath. J. Phys. Soc. Jpn. 58(1), 101–114 (1989). https://doi.org/10.1143/JPSJ.58.101 Y. Tanimura, P.G. Wolynes, Quantum and classical Fokker-Planck equations for a Gaussian-Markovian noise bath. Phys. Rev. A 43(8), 4131–4142 (1991). https://doi.org/10.1103/PhysRevA.43.4131 Y. Tanimura, Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75, 082001 (2006). https://doi.org/10.1143/JPSJ.75.082001 Y. Tanimura, Numerically “exact’’ approach to open quantum dynamics: the hierarchical equations of motion (HEOM). J. Chem. Phys. 153(2), 020901 (2020). https://doi.org/10.1063/5.0011599 M. Xu, Y. Yan, Q. Shi, J. Ankerhold, J.T. Stockburger, Taming quantum noise for efficient low temperature simulations of open quantum systems. Phys. Rev. Lett. 129, 230601 (2022). https://doi.org/10.1103/PhysRevLett.129.230601 A. Ishizaki, Y. Tanimura, Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies. J. Chem. Phys. 125(8), 084501 (2006). https://doi.org/10.1063/1.2244558 Q. Shi, Y. Xu, Y. Yan, M. Xu, Efficient propagation of the hierarchical equations of motion using the matrix product state method. J. Chem. Phys. 148(17), 174102 (2018). https://doi.org/10.1063/1.5026753 I.S. Dunn, R. Tempelaar, D.R. Reichman, Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches. J. Chem. Phys. 150(18), 184109 (2019). https://doi.org/10.1063/1.5092616 Y. Yan, T. Xing, Q. Shi, A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes. J. Chem. Phys. 153(20), 204109 (2020). https://doi.org/10.1063/5.0027962 Meng Xu, private communication T. Li, Y. Yan, Q. Shi, A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the brownian oscillator spectral density. J. Chem. Phys. 156(6), 064107 (2022). https://doi.org/10.1063/5.0082108 Y. Nakatsukasa, L.N. Trefethen, An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput. 42(5), A3157–A3179 (2020). https://doi.org/10.1137/19M1281897 R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide (Society for Industrial and Applied Mathematics, Philadelphia, 1998). https://doi.org/10.1137/1.9780898719628 A. Ishizaki, Y. Tanimura, Quantum dynamics of system strongly coupled to low-temperature colored noise bath: Reduced hierarchy equations approach. J. Phys. Soc. Jpn. 74(12), 3131–3134 (2005). https://doi.org/10.1143/JPSJ.74.3131 T. Ikeda, A. Nakayama, Collective bath coordinate mapping of “hierarchy’’ in hierarchical equations of motion. J. Chem. Phys. 156(10), 104104 (2022). https://doi.org/10.1063/5.0082936 K. Schmitz, J.T. Stockburger, A variance reduction technique for the stochastic Liouville-von Neumann equation. Eur. Phys. J. Sp. Top. 227, 1929 (2019). https://doi.org/10.1140/epjst/e2018-800094-y