Application of N-TiO2 for visible-light photocatalytic degradation of Cylindrospermopsis raciborskii — More difficult than that for photodegradation of Microcystis aeruginosa ?

Environmental Pollution - Tập 245 - Trang 642-650 - 2019
Yan Jin1, Shasha Zhang1, Hangzhou Xu1, Chunxia Ma1, Jiongming Sun1, Hongmin Li1, Haiyan Pei1,2
1School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
2Shandong Provincial Engineering Centre for Environmental Science and Technology, Jinan, 250061, China

Tài liệu tham khảo

Abdelhaleem, 2017, Photodegradation of 4-chlorophenoxyacetic acid under visible LED activated N-doped TiO2 and the mechanism of stepwise rate increment of the reused catalyst, J. Hazard Mater., 338, 491, 10.1016/j.jhazmat.2017.05.056 Bernard, 2003, Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: evidence of liver damage caused by a French C. raciborskii strain, Environ. Toxicol., 18, 176, 10.1002/tox.10112 Catarina, 2015, Biochemical and growth performance of the aquatic macrophyte Azolla filiculoides to sub-chronic exposure to cylindrospermopsin, Ecotoxicology, 24, 1848, 10.1007/s10646-015-1521-x Chen, 2015, TiO2 photocatalytic degradation and detoxification of cylindrospermopsin, J. Photochem. Photobiol., A, 307–308, 115, 10.1016/j.jphotochem.2015.03.013 Cheng, 2012, Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity, Appl. Surf. Sci., 258, 3244, 10.1016/j.apsusc.2011.11.072 Chiswell, 1999, Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition, Environ. Toxicol., 14, 155, 10.1002/(SICI)1522-7278(199902)14:1<155::AID-TOX20>3.0.CO;2-Z Dalrymple, 2010, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal. B Environ., 98, 27, 10.1016/j.apcatb.2010.05.001 Davis, 2014, Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle, Harmful Algae, 31, 18, 10.1016/j.hal.2013.09.007 Devi, 2014, Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms, RSC Adv., 4, 28265, 10.1039/C4RA03291H Fagan, 2016, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mater. Sci. Semicond. Process., 42, 2, 10.1016/j.mssp.2015.07.052 Fotiou, 2015, Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products, Chemosphere, 119, S89, 10.1016/j.chemosphere.2014.04.045 Fotiou, 2016, Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2, Water Res., 90, 52, 10.1016/j.watres.2015.12.006 Haywood, 2012, Biomonitoring genotoxicity and cytotoxicity of Microcystis aeruginosa (Chroococcales, Cyanobacteria) using the Allium cepa test, Sci. Total Environ., 432, 180, 10.1016/j.scitotenv.2012.05.093 Hummert, 2001, Liquid chromatography–mass spectrometry identification of microcystins in Microcystis aeruginosa strain from lake Thanh Cong, Hanoi, Vietnam, Chromatographia, 54, 569, 10.1007/BF02492180 Jiang, 2015, Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae, Bioresour. Technol., 197, 178, 10.1016/j.biortech.2015.08.068 Kontos, 2008, Nitrogen modified nanostructured titania: electronic, structural and visible-light photocatalytic properties, Phys. Status Solidi, 2, 83, 10.1002/pssr.200802006 Lei, 2014, Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China, Environ. Monit. Assess., 186, 3079, 10.1007/s10661-013-3602-8 Li, 2014, Kinetics of cell inactivation, toxin release, and degradation during permanganation of Microcystis aeruginosa, Environ. Sci. Technol., 48, 2885, 10.1021/es405014g Li, 2015, The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes, Environ. Technol., 36, 920, 10.1080/09593330.2014.966768 Liu, 2012, Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2, nanoparticles, Nanotechnology, 23, 294003, 10.1088/0957-4484/23/29/294003 Messineo, 2010, Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy, Environ. Toxicol., 25, 18 Mohamed, 2013, Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom, Environ. Monit. Assess., 185, 2157, 10.1007/s10661-012-2696-8 Parlanti, 2000, Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs, Org. Geochem., 31, 1765, 10.1016/S0146-6380(00)00124-8 Pelaez, 2012, A comparative study on the removal of cylindrospermopsin and microcystins from water with NF-TiO2-P25 composite films with visible and UV-vis light photocatalytic activity, Appl. Catal. B Environ., 121–122, 30, 10.1016/j.apcatb.2012.03.010 Piccini, 2011, Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes, Harmful Algae, 10, 644, 10.1016/j.hal.2011.04.016 Pinho, 2015, Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin, Chem. Eng. J., 268, 144, 10.1016/j.cej.2014.12.111 Pollard, 2010, Lake viruses lyse cyanobacteria, Cylindrospermopsis raciborskii, enhances filamentous-host dispersal in Australia, Acta Oecol., 36, 114, 10.1016/j.actao.2009.10.007 Qu, 2012, Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling, Water Res., 46, 2881, 10.1016/j.watres.2012.02.045 Sacco, 2015, Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors, Appl. Catal. B Environ., 164, 462, 10.1016/j.apcatb.2014.09.062 Saker, 2000, The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia, Phycologia, 39, 349, 10.2216/i0031-8884-39-4-349.1 Shen, 2014, Evaluation of the after-effects of cyanobacterial cell removal and lysis by photocatalysis using Ag/AgBr/TiO2, Water Sci. Technol., 70, 828, 10.2166/wst.2014.287 Song, 2018, Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: performance, mechanisms and implications, Appl. Catal. B Environ., 226, 83, 10.1016/j.apcatb.2017.12.034 Tonietto, 2014, Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb, Water Res., 49, 381, 10.1016/j.watres.2013.10.025 Vaiano, 2015, Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation, Appl. Catal. B Environ., 170–171, 153, 10.1016/j.apcatb.2015.01.039 Vehovszky, 2015, Pharmacological studies confirm neurotoxic metabolite(s) produced by the bloom-forming Cylindrospermopsis raciborskii in Hungary, Environ. Toxicol., 30, 501, 10.1002/tox.21927 Wang, 2014, Bismuth oxybromide promoted detoxification of cylindrospermopsin under UV and visible light illumination, Appl. Catal. B Environ., 150–151, 380, 10.1016/j.apcatb.2013.12.016 Wang, 2018, Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa, Water Res., 131, 320, 10.1016/j.watres.2017.12.062 Wang, 2017, Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites, Chem. Eng. J., 320, 253, 10.1016/j.cej.2017.03.062 Wood, 2014, Recent invader or indicator of environmental change? A phylogenetic and ecological study of Cylindrospermopsis raciborskii in New Zealand, Harmful Algae, 39, 64, 10.1016/j.hal.2014.06.013 Wu, 2016, Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation, J. Mater. Chem., 4, 1052, 10.1039/C5TA08044D Xu, 2013, Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis, Water Res., 47, 2005, 10.1016/j.watres.2013.01.019 Xu, 2016, Behaviors of Microcystis aeruginosa cells during floc storage in drinking water treatment process, Sci. Rep., 6, 34943, 10.1038/srep34943 Yan, 2016, Ozonation of cylindrospermopsin (cyanotoxin): degradation mechanisms and cytotoxicity assessments, Environ. Sci. Technol., 50, 1437, 10.1021/acs.est.5b04540 Yang, 2010, Visible light-induced N-doped TiO2 nanoparticles for the degradation of microcystin-LR, Sci. China Chem., 53, 1793, 10.1007/s11426-010-4013-0 Zamyadi, 2012, Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination, Water Res., 46, 1524, 10.1016/j.watres.2011.06.029 Zhang, 2015, Identification of TiO2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin, Appl. Catal. B Environ., 163, 591, 10.1016/j.apcatb.2014.08.034