Spacial and dynamic energy demand of the E39 highway – Implications on electrification options
Tài liệu tham khảo
Johansson T. Fossilfrihet på väg SOU 2013: 84. Stockholm, Statens offentliga utredningar; 2013. Swedish.
European Commission. WHITE PAPER roadmap to a single european transport area – towards a competitive and resource efficient transport system. Brussels; 2011.
TØI. Vegen mot klimavennlig transport. Oslo, Norway: Institute of Transport Economics; 2014. Norwegian.
FABRIC. Feasibility analysis and development of on-road charging solutions for future electric vehicles; 2016. <http://www.fabric-project.eu/> [accessed 19.03.16].
Viktoria Swedish I. Slide-in electric road system – conductive project report; 2013.
Global VG. Volvo global news – the road of tomorrow is electric; 2016. <www.news.volvogroup.com/2013/05/23/the-road-of-tomorrow-is-electric/> [accessed 19.03.16].
Siemens. eHighway; 2016. <http://www.siemens.com/press/en/feature/2015/mobility/2015-06-ehighway.php> [accessed 19.03.16].
Viktoria Swedish I. Slide-in electric road system – inductive project report; 2013.
Chen, 2015, Electrification of roads: opportunities and challenges, Appl Energy, 150, 109, 10.1016/j.apenergy.2015.03.067
Elways. Elways – conductive feeding of vehicle in motion; 2016. <http://elways.se/?lang=en> [accessed 19.03.16].
Larsson Ö. Ladda för nya marknader: elbilens konsekvenser för elnät, elproduktionen och servicestrukturer; VINNOVA; 2010. Swedish.
Göransson, 2010, Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system, Energy Policy, 38, 5482, 10.1016/j.enpol.2010.04.001
Grahn P. Electric vehicle charging impact on load profile. Licentiate thesis; 2013.
Hadley, 2009, Potential impacts of plug-in hybrid electric vehicles on regional power generation, Electr J, 22, 56, 10.1016/j.tej.2009.10.011
Weiller, 2011, Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States, Energy Policy, 39, 3766, 10.1016/j.enpol.2011.04.005
Hartmann, 2011, Impact of different utilization scenarios of electric vehicles on the German grid in 2030, J Power Sour, 196, 2311, 10.1016/j.jpowsour.2010.09.117
Mullan, 2011, Modelling the impacts of electric vehicle recharging on the Western Australian electricity supply system, Energy Policy, 39, 4349, 10.1016/j.enpol.2011.04.052
Park, 2013, Impact of electric vehicle penetration-based charging demand on load profile, J Electr Eng Technol, 8, 244, 10.5370/JEET.2013.8.2.244
Vatne, 2012, Analysis of a scenario of large scale adoption of electrical vehicles in nord-trøndelag, Energy Procedia, 20, 291, 10.1016/j.egypro.2012.03.029
Guille, 2009, A conceptual framework for the vehicle-to-grid (V2G) implementation, Energy Policy, 37, 4379, 10.1016/j.enpol.2009.05.053
Kötter, 2016, The future electric power system: Impact of Power-to-Gas by interacting with other renewable energy components, J Energy Storage, 5, 113, 10.1016/j.est.2015.11.012
de Boer, 2014, The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels, Energy, 72, 360, 10.1016/j.energy.2014.05.047
Qadrdan, 2015, Role of power-to-gas in an integrated gas and electricity system in Great Britain, Int J Hydrogen Energy, 40, 5763, 10.1016/j.ijhydene.2015.03.004
Streibel, 2013, Analysis of an integrated carbon cycle for storage of renewables, Energy Procedia, 40, 202, 10.1016/j.egypro.2013.08.024
Vandewalle, 2014, The interaction of a high renewable energy/low carbon power system with the gas system through power to gas, 28
Mathiesen BV. Analysis of power balancing with fuel cells & hydrogenproduction plants in Denmark. Energinet. dk; 2009.
Guandalini, 2015, Power-to-gas plants and gas turbines for improved wind energy dispatchability: energy and economic assessment, Appl Energy, 147, 117, 10.1016/j.apenergy.2015.02.055
Grahn P. Electric vehicle charging modeling. Doctoral thesis; 2014.
Stamati, 2013, On-road charging of electric vehicles, 1
Norwegian Public Road Administration. Coastal Highway route E39; 2016. <http://www.vegvesen.no/Vegprosjekter/ferjefriE39/English> [accessed 19.03.16].
Statistics Norway; 2016. <https://www.ssb.no/en/> [accessed 19.03.16].
Sovran G, Bohn MS. Formulation for the tractive energy requirement of vehicles during the EPA schedules. SAE810184; 1981.
Sandberg, 2001
Hammarström U, Eriksson J, Karlsson R, Yahya MR. Rolling resistance model, fuel consumption model and the traffic energy saving potential from changed road surface conditions; 2012.
Guzzella L, Sciarretta A. Vehicle propulsion systems, 3rd ed.; 2013.
Björnsson, 2016, The potential for brake energy regeneration under Swedish conditions, Appl Energy, 168, 75, 10.1016/j.apenergy.2016.01.051
Ross, 1997, Fuel efficiency and the physics of automobiles, Contemp Phys, 38, 381, 10.1080/001075197182199
Cappiello, 2002, A statistical model of vehicle emissions and fuel consumption, 801
Norwegian Public Road Administration. Vegkart; 2016. <https://www.vegvesen.no/> [accessed 19.03.16].
Karlsson, 2013, GPS measurement of Swedish car movements for assessment of possible electrification, 1
Transport Research Laboratory. Feasibility study: powering electric vehicles on England's major roads; 2015.
DiOrio, 2015
Campanari, 2009, Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations, J Power Sour, 186, 464, 10.1016/j.jpowsour.2008.09.115
Hannula, 2015, Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: performance and cost analysis, Biomass Bioenergy, 74, 26, 10.1016/j.biombioe.2015.01.006
Schiebahn, 2015, Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany, Int J Hydrogen Energy, 40, 4285, 10.1016/j.ijhydene.2015.01.123
Benjaminsson G, Benjaminsson J, Rudberg RB. Power to gas – a technical review. Malmö; 2013.
Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E. Development of water electrolysis in the European Union. Lausanne, Switzerland; 2014.
Mathiesen, 2013
Smolinka T, Günther M, Garche J. Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien. Kurzfassung des Abschlussberichtes NOW-Studie, Freiburg im Breisgau; 2011.
Grond, 2013
Becker, 2012, Production of Fischer-Tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy, 47, 99, 10.1016/j.energy.2012.08.047
Smejkal, 2014, Economic assessment of the hydrogenation of CO2 to liquid fuels and petrochemical feedstock, Chemie Ingenieur Technik, 86, 679, 10.1002/cite.201300180
Hannula I, Kurkela E. Liquid transportation fuels via large-scale fluidised-bed gasification of lignocellulosic biomass; 2013.
Tremel, 2015, Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis, Int J Hydrogen Energy, 40, 11457, 10.1016/j.ijhydene.2015.01.097
Vijayagopal R, Gallagher K, Lee D, Rousseau A. Comparing the powertrain energy densities of electric and gasoline vehicles. SAE technical paper; 2016.
Ekdunge, 1998, The fuel cell vehicle analysis of energy use, emissions and cost, Int J Hydrogen Energy, 23, 381, 10.1016/S0360-3199(97)00062-1
Edwards R, Mahieu V, Griesemann J-C, Larivé J-F, Rickeard DJ. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. SAE technical paper; 2004.
Marcinkoski J, Vijayagopa R, Kast J, Duran A. Driving an industry: medium and heavy duty fuel cell electric truck component sizing. EVS29. Montreal; 2016.
Eudy, 2014
Ben-Chaim, 2013, Analytic modeling of vehicle fuel consumption, Energies, 6, 117, 10.3390/en6010117
Giannelli RA, Nam E, Helmer K, Younglove T, Scora G, Barth M. Heavy-duty diesel vehicle fuel consumption modeling based on road load and power train parameters. SAE technical paper; 2005.
Körner, 2015
Nam, 2005
Frakt, 2012
Taljegård, 2015, Electrofuels–a possibility for shipping in a low carbon future?, 405