On acyclic edge-coloring of complete bipartite graphs

Discrete Mathematics - Tập 340 - Trang 481-493 - 2017
Ayineedi Venkateswarlu1, Santanu Sarkar2, Sai Mali Ananthanarayanan3
1Computer Science Unit, Indian Statistical Institute - Chennai Centre, MGR Knowledge City Road, Taramani, Chennai - 600113, India
2Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036, India
3Department of Combinatorics & Optimization, University of Waterloo, Canada

Tài liệu tham khảo

Aharoni, 2014, On a generalization of Ryser-Brualdi-Stein conjecture, J. Graph Theory, 78, 143, 10.1002/jgt.21796 Alon, 1991, Acyclic coloring of graphs, Random Structures Algorithms, 2, 277, 10.1002/rsa.3240020303 Alon, 2001, Acyclic edge coloring of graphs, J. Graph Theory, 37, 157, 10.1002/jgt.1010 Andersen, 2012, Optimal acyclic edge-coloring of cubic graphs, J. Graph Theory, 71, 353, 10.1002/jgt.20650 Basavaraju, 2009, A note on acyclic edge coloring of complete bipartite graphs, Discrete Math., 309, 4646, 10.1016/j.disc.2009.01.014 Basavaraju, 2010, d-regular graphs of acyclic chromatic index at least d+2, J. Graph Theory, 63, 226, 10.1002/jgt.20422 Brualdi, 1991 Bryant, 2002, A family of perfect factorizations of complete bipartite graphs, J. Combin. Theory Ser. A, 98, 328, 10.1006/jcta.2001.3240 Burnstein, 1979, Every 4-valent graph has an acyclic 5-coloring, Soobšč Akad Nauk Gruzin SSR, 93, 21 Colbourn, 2006 Esperet, 2013, Acyclic edge-coloring using entropy compression, European J. Combin., 34, 1019, 10.1016/j.ejc.2013.02.007 Fiamc˘ík, 1978, The acyclic chromatic class of a graph, Math. Slovaca, 28, 139 I. Giotis, L.M. Kirousis, K.I. Psaromiligkos, D.M. Thilikos, On the algorithmic Lovász local lemma and acyclic edge coloring, in: ANALCO, 2015, 16–25. Also available http://arxiv.org/abs/1407.5374. Grünbaum, 1973, Acyclic coloring of planar graphs, Israel J. Math., 14, 390, 10.1007/BF02764716 Guldan, 1991, Acyclic chromatic index and linear arboricity of graphs, Math. Slovaca, 41, 21 M. Molloy, B. Reed, Further Algorithmic Aspects of the Local Lemma, in: STOC, 1998, 524–529. R. Muthu, N. Narayanan, C.R. Subramanian, Optimal acyclic edge coloring of grid like graphs, in: COCOON, 2006, 360–367. Muthu, 2007, Acyclic edge coloring of outerplanner graphs, 144 Něsetřil, 2005, The acyclic edge chromatic number of a random d-regular graph is d+1, J. Graph Theory, 49, 69, 10.1002/jgt.20064 Ndreca, 2012, Improved bounds on coloring of graphs, European J. Combin., 33, 592, 10.1016/j.ejc.2011.12.002 Stein, 1975, Transversals of Latin squares and their generalizations, Pacific J. Math., 59, 567, 10.2140/pjm.1975.59.567 Venkateswarlu, 2016, On acyclic edge-coloring of the complete bipartite graphs K2p−1,2p−1 for odd prime p, Discrete Math., 339, 72, 10.1016/j.disc.2015.07.010 Vizing, 1964, On an estimate of the chromatic class of a p-graph, Metody Diskret Anal, 3, 25 Wang, 2013, On coloring problems, 2095