The influence of cell counts, cell size, EPS and microbial inclusions on the lubrication properties of microorganisms

Production Engineering - Tập 9 - Trang 149-159 - 2014
M. Redetzky1, A. Rabenstein2, B. Seidel1, E. Brinksmeier1, H. Wilhelm3
1Foundation Institute of Materials Science, ECO-Centrum, Bremen, Germany
2Department of Microbiology, Bremen Institute for Material Testing, Bremen, Germany
3University of Bremen, Bremen, Germany

Tóm tắt

Metalworking fluids (MWF) play an essential role in many machining applications and can be classified e.g. according to DIN 51385 in non-water miscible- and water miscible metalworking fluids. Most of the several billion liters of the worldwide and annually consumed MWF are water-based and thus exposed to a microbial contamination, which leads to a deterioration of MWF compounds and therefore to a loss of quality and technical performance. To maintain the MWF quality, biocides are used to reduce the microbial load, regardless of their potential risk for health and environment. A further limitation poses the high consumption of raw materials (mainly mineral oils) for the production of MWF, with approximately 50,000 t of raw materials consumed annually in Germany. To overcome these limitations, the paradigm shift of using microorganisms as a lubricant in a manufacturing process is investigated in this paper. Preliminary investigations on a Brugger-tribotester indicated the great potential of microorganisms as replacement for conventional metalworking fluid components. Against this background, the approach presented here intends to investigate the influence of cell counts, cell size, extracellular polymeric substances and microbial storage products on the lubrication properties of selected microorganisms. The results of the tribological tests show, that some microorganism exhibit superior lubrication properties (up to 68 % higher) compared to a highly concentrated conventional metalworking fluid. Therefore, the potential of microorganisms to substitute conventional MWF components can be derived.

Tài liệu tham khảo

Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. Ann CIRP 53(2):511–537 Brinksmeier E, Heinzel C, Meyer L (2000) Coolant supply conditions and their effect on the workpiece surface layer in grinding. Ann WGP 8(1):9–12 Inasaki I, Tönshoff HK, Howes TD (1993) Abrasive machining in the future. Ann CIRP 42(2):723–732 Walter A (2002) Tribophysikalische und tribochemische Vorgänge in der Kontaktzone bei der Zerspanung. Dr.-Ing. Dissertation, University of Bremen Bundesamt für Wirtschaft und Ausfuhrkontrolle, http://www.bafa.de/bafa/de/energie/mineraloel_rohoel/ausgewaehlte_statistiken/index.html Barth, M. (2003) Belastung und Beanspruchung durch biologische Arbeitsstoffe bei Kühlschmiermittel-Exponierten in der Metallbearbeitung, Dr. med. Dissertation, Heinrich-Heine-University Düsseldorf Lee M, Chandler A. C. (1941) A study of the nature, growth and control of bacteria in cutting compounds. J Bacteriol 41(3):373–386 Sabina LR, Pivnick H (1956) oxidation of soluble oil emulsions and emulsifiers by Pseudomonas oleovorans and Pseudomonas formicans. Appl Microbiol 4:171–175 Fabian FW, Pivnick H (1953) Growth of bacteria in soluble oil emulsions. Appl Microbiol 1:199–203 Rossmoore HW (1989) Microbial degradation of water-based metalworking fluids. In: Moo-Young M, Cooney CL, Humphrey AE (eds) Comprehensive biotechnology, vol 3, chap 14. Pergamon Press, Oxford, pp 249–269 Pivnick H, Fabian FW (1954) Coliform bacteria in soluble oil emulsions. Appl Environ Microbiol 2(2):107–110 Tant CO, Bennet EO (1958) The growth of aerobic bacteria in metal-cutting fluids. Appl Microbiol 6:388–391 Tant CO, Bennett EO (1956) The isolation of pathogenic bacteria from used emulsion oils. Appl Environ Microbiol 4(6):332–338 van der Gast CJ, Knowles CJ, Wright MA, Thompson IP (2001) Identification and characterization of bacterial populations of an in-use metal-working fluid by phenotypic and genotypic methodology. Int Biodeterior Biodegradation 47:113–123 Lodders N, Kämpfer P (2012) A combined cultivation and cultivation-dependent approach shows high bacterial diversity in water-miscible metalworking fluids. Syst Appl Microbiol 35:246–252 Veillette M, Thorne PS, Gordon T, Duchaine C (2004) Six month tracking of microbial growth in a metalworking fluid after system cleaning and recharging. Annals Occup Hyg 48(6):541–546 Dilger S, Fluri A, Sonntag H-G (2005) Bacterial contamination of preserved and non-preserved metal working fluids. Int J Hyg Environ Health 208:467–476 Rabenstein A, Koch T, Remesch M, Brinksmeier E, Kuever J (2009) Microbial degradation of water miscible metal working fluids. Int Biodeterior Biodegradation 63:1023–1029 Koch T, Rabenstein A, Garbrecht M (2007) Mikrobielle Beeinflussung von wassergemischten Kühlschmierstoffen. Mineralöltechnik 52(5):1–27 Koch T (2008) Auswirkung des mikrobiellen Befalls von wassergemischten Kühlschmierstoffen auf das Zerspanergebnis (Teil 3), HTM – Härterei-Technische Mitteilungen, 63(2):115–132 Palmowski B, Huesmann-Cordes A-G, Kuschel S, Meyer D, Weinhold MX, Brinksmeier E (2014) Identification of marker substances for the efficient online monitoring of metal working fluids. LUBMAT 2014. Manchester, UK Nishimura Y, Ino T, Iizuka H (1988) Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Bacteriol 38(2):209–211 Krutzman CP, Fell JW, Boekhout T (2011) The yeasts, a taxonomic study, 5th edn, ISBN: 978-0-444-52149-1 Vishnivetskaya TA, Lucas S, Copeland A, Lapidus A, Glavina del Rio T, Dalin E, Tice H, Bruce DC, Goodwin LA, Pitluck S, Saunders E, Brettin T, Detter C, Han C, Larimer F, Land ML, Hauser LJ, Kyrpides NC, Ovchinnikova G, Kathariou S, Ramaley RF, Rodrigues DF, Hendrix C, Richardson P, Tiedje JM (2011) Genome announcements complete genome sequence of the thermophilic bacterium Exiguobacterium sp. AT1b. J Bacteriol 193(11):2880–2881 Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240 Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (2006) The prokaryotes—a handbook on the biology of bacteria, 3rd edn, ISBN-13: 978-0387-25476-0 Kämpfer P, Rossellô-Mora R, Scholz HC, Welinder-Olsson C, Falsen E, Busse H-J (2006) Description of Pseudochrobactrum gen. nov. with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56:1823–1829 Wozniak DJ, Wyckoff TJO, Starkey M, Keyer R, Azadi P, O´Toole GA, Parsek MR (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci 100(13):7907–7912 Dabboussi F, Hamze M, Singer E, Geoffrey V, Meyer J-M, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376 Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223 Teixeira LM, da Glória M, Carvalho S, Lúcia V, Merquior C, Steigerwalt AG, Brenner DJ, Facklam RR (1997) Phenotypic and genotypic characterization of Vagococcus fluvialis, including strains isolated from human sources. J Clin Microbiol 35(11):2778–2781 Cypionka H (2010) Grundlagen der Mikrobiologie, 4. Auflage. ISBN 978-3-642-05095-4 Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386 Redetzky M, Rabenstein A, Palmowski B, Brinksmeier E (2014) Microorganisms as a replacement for metal working fluids. Tribol Manuf Process Join Plast Deform 2:357–364 Schulte S, Flemming H-C (2006) Ursachen der erhöhten Resistenz von Mikroorganismen in Biofilmen. Chem Ing Tech 78:1683–1689 Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix—the house of “Biofilm Cells”. J Bacteriol 189(22):7945–7947 Peterschewski J, Veltl G (2007) Antimikrobielle beschichtungen für werkzeugmaschinen. HTM Härterei-Technische Mitteilungen 62(5):210–215