Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials

Progress in Solid State Chemistry - Tập 42 - Trang 1-21 - 2014
Mitsuo Suga1, Shunsuke Asahina1, Yusuke Sakuda1, Hiroyoshi Kazumori1, Hidetoshi Nishiyama1, Takeshi Nokuo1, Viveka Alfredsson2, Tomas Kjellman2, Sam M. Stevens3, Hae Sung Cho4, Minhyung Cho4, Lu Han5, Shunai Che5, Michael W. Anderson6, Ferdi Schüth7, Hexiang Deng8, Omar M. Yaghi9, Zheng Liu10, Hu Young Jeong11, Andreas Stein12
1JEOL Ltd., SM Business Unit, Tokyo, Japan
2Physical Chemistry, Lund University, Sweden
3Private Contributor, UK
4Graduate School of EEWS, KAIST, Republic of Korea
5School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, China
6Centre for Nanoporous Materials, School of Chemistry, University of Manchester, UK
7Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim, Germany
8College of Chemistry and Molecular Sciences, Wuhan University, China
9Department of Chemistry, University of California, Berkeley, USA
10Nanotube Research Center, AIST, Tsukuba, Japan
11UNIST Central Research Facilities/School of Mechanical & Advanced Materials Engineering, UNIST, Republic of Korea
12Department of Chemistry, University of Minnesota, Minneapolis, USA

Tài liệu tham khảo

Liu, 2013, A review of fine structures of nanoporous materials as evidenced by microscopic methods, Microscopy, 62, 109, 10.1093/jmicro/dfs098 Stevens, 2009, An appraisal of high resolution scanning electron microscopy applied to porous materials, JEOL News, 44, 17 Holland, 1998, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 281, 538, 10.1126/science.281.5376.538 Stein, 2013, Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals, Chem Soc Rev, 42, 2763, 10.1039/C2CS35317B Lai, 2007, Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact, Anal Chem, 79, 4621, 10.1021/ac070132b Knoll, 1932, Das elektronenmikroskop, Z Physk, 78, 318 Ruska, 1987, The development of the electron microscope and of electron microscopy, Biosci Rep, 7, 607, 10.1007/BF01127674 Knoll, 1935, Charging potential and secondary emission of bodies under electron irradiation, Z Tech Phys, 16, 467 Von Ardenne, 1938, The scanning electron microscope: theoretical fundamentals (in German), Z Physk, 109, 553 von Ardenne, 1938, The scanning electron microscope: practical construction (in German), Z Tech Phys, 19, 407 Zworykin, 1942, A scanning electron microscope, ASTM Bull, 117, 15 Oatley, 1982, The early history of the scanning electron microscope, J Appl Phys, 53, R1, 10.1063/1.331666 Everhart, 1996, Persistence pays off: Sir Charles Oatley and the scanning electron microscope, J Vac Sci Technol B Microelectron Nanom Struct, 14, 3620, 10.1116/1.588737 Everhart, 1960, Wide-band detector for micro-microampere low-energy electron currents, J Sci Instrum, 37, 246, 10.1088/0950-7671/37/7/307 Smith, 1956 Bell, 2012 Crewe, 1968, Electron gun using a field emission source, Rev Sci Instrum, 39, 576, 10.1063/1.1683435 Swanson, 1969, Angular confinement of field electron and ion emission, J Appl Phys, 40, 4741, 10.1063/1.1657282 Swanson, 2008, Review of ZrO/W schottky cathode, 1 Goldstein, 2003 Kanaya, 1972, Penetration and energy-loss theory of electrons in solid targets, J Phys Appl Phys, 5, 43, 10.1088/0022-3727/5/1/308 Seiler, 1983, Secondary electron emission in the scanning electron microscope, J Appl Phys, 54, R1, 10.1063/1.332840 Reimer, 1998 Drouin, 1997, CASINO: a new Monte Carlo code in C language for electron beam interactions—part II: tabulated values of the Mott cross section, Scanning, 19, 20, 10.1002/sca.4950190103 Dwyer, 1985, A comparison of electron transport in AES/PES with neutron transport theory, Surf Sci, 152, 884, 10.1016/0039-6028(85)90501-1 Sato, 2008, Resolution, 391 Sato, 1991, A method for calculating the current density of charged particle beams and the effect of finite source size and spherical and chromatic aberrations on the focusing characteristics, J Vac Sci Technol B Microelectron Nanom Struct, 9, 2602, 10.1116/1.585700 Barth, 1996, Addition of different contributions to the charged particle probe size, Optik, 101, 101 Joy, 1991, Contrast in high-resolution scanning electron microscope images, J Microsc, 161, 343, 10.1111/j.1365-2818.1991.tb03095.x Joy, 1996, Low voltage scanning electron microscopy, Micron, 27, 247, 10.1016/0968-4328(96)00023-6 Reimer, 1993 Drouin, 2007, CASINO V2. 42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, Scanning, 29, 92, 10.1002/sca.20000 Hovington, 1997, CASINO: a new Monte Carlo code in C language for electron beam interaction—part I: description of the program, Scanning, 19, 1, 10.1002/sca.4950190101 Murata, 1974, Spatial distribution of backscattered electrons in the scanning electron microscope and electron microprobe, J Appl Phys, 45, 4110, 10.1063/1.1663920 Shimizu, 1975, Experimental and theoretical study of energy dissipation profiles of keV electrons in polymethylmethacrylate, J Appl Phys, 46, 1581, 10.1063/1.321759 Joy, 1989, An empirical stopping power relationship for low-energy electrons, Scanning, 11, 176, 10.1002/sca.4950110404 Cazaux, 1999, Mechanisms of charging in electron spectroscopy, J Electron Spectrosc Relat Phenom, 105, 155, 10.1016/S0368-2048(99)00068-7 Ying, 1994, Insulator charging under irradiation with a stationary electron probe, Meas Sci Technol, 5, 1089, 10.1088/0957-0233/5/9/009 Melchinger, 1995, Dynamic double-layer model – description of time-dependent charging phenomena in insulators under electron-beam irradiation, J Appl Phys, 78, 6224, 10.1063/1.360569 Renoud, 2002, Monte Carlo simulation of the charge distribution induced by a high-energy electron beam in an insulating target, J Phys-Condens Matter, 14, 231, 10.1088/0953-8984/14/2/310 Bursill, 1981, Stability of zeolites under electron irradiation and imaging of heavy cations in silicates, Nature, 289, 157, 10.1038/289157a0 Zach, 1990, Resolution limits in low voltage scanning electron microscopes using retarding objective lenses, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 298, 255, 10.1016/0168-9002(90)90623-E Mullerova, 1992, Some approaches to low-voltage scanning electron-microscopy, Ultramicroscopy, 41, 399, 10.1016/0304-3991(92)90219-A Pease, 1967, 176 Yau, 1981, Generation and applications of finely focused beams of low-energy electrons, J Vac Sci Technol, 19, 1048 Frosien, 1987, High performance electron optical column for testing ICs with submicrometer design rules, Microelectron Eng, 7, 163, 10.1016/S0167-9317(87)80008-4 Frosien, 1989, Compound magnetic and electrostatic lenses for low-voltage applications, J Vac Sci Technol B, 7, 1874, 10.1116/1.584683 Hordon, 1993, Limits of low-energy electron optics, J Vac Sci Technol B Microelectron Nanom Struct, 11, 2299, 10.1116/1.586894 Ose Y, Ezumi M, Todokoro H. Improved CD-SEM optics with retarding and boosting electric fields. In: Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), metrology, inspection, and process control for microlithography XIII, pts 1 and 21999. p. 930–939. Yonezawa, 2002, Single pole-piece objective lens with electrostatic bipotential lens for SEM, J Electron Microsc, 51, 149, 10.1093/jmicro/51.3.149 Khursheed, 2002, Ultimate resolution limits for scanning electron microscope immersion objective lenses, Optik-Int J Light Electron Opt, 113, 67, 10.1078/0030-4026-00118 Sato, 2007, Application of low-voltage scanning electron microscopy to the characterization of steel surface, Tetsu Hagane-J Iron Steel Inst Jpn, 93, 99 Todokoro, 1985, Stroboscopic testing of LSIs with low voltage scanning electron microscope, J Microsc, 140, 313, 10.1111/j.1365-2818.1985.tb02685.x Nakamae, 1985, A new hemispherical retarding field energy analyser for quantitative voltage measurements in the SEM, J Phys Sci Instrum, 18, 437, 10.1088/0022-3735/18/5/017 Cho, 2011, Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation, Solid State Sci, 13, 750, 10.1016/j.solidstatesciences.2010.04.022 Deng, 2012, Large-pore apertures in a series of metal-organic frameworks, Science, 336, 1018, 10.1126/science.1220131 Liu, 2012, Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity, Nat Commun, 3, 1215, 10.1038/ncomms2215 Kjellman, 2013, Independent fine-tuning of intrawall-and primary mesoporosity of SBA-15, Chem Mater, 25, 1989, 10.1021/cm4009442 Galeano, 2011, Yolk-Shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au,@ C and Au,@ ZrO2 for CO oxidation as an example, Chem-A Eur J, 17, 8434, 10.1002/chem.201100318 Ogura, 1988, 204 Ogura, 1990, 404 Merli, 1995, On the resolution of semiconductor multilayers with a scanning electron microscope, Ultramicroscopy, 60, 229, 10.1016/0304-3991(95)00069-6 Khursheed, 2011 Wells, 1973, Method for examining solid specimens with improved resolution in the scanning electron microscope (SEM), Appl Phys Lett, 23, 353, 10.1063/1.1654916 Merli, 2001, Spatial resolution and energy filtering of backscattered electron images in scanning electron microscopy, Ultramicroscopy, 88, 139, 10.1016/S0304-3991(00)00132-7 Green, 1991, Atmospheric scanning electron microscopy using silicon nitride thin film windows, J Vac Sci Technol B Microelectron Nanom Struct, 9, 1557, 10.1116/1.585422 Thiberge, 2004, Scanning electron microscopy of cells and tissues under fully hydrated conditions, Proc Natl Acad Sci U S A, 101, 3346, 10.1073/pnas.0400088101 Nishiyama, 2010, Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, J Struct Biol, 172, 191, 10.1016/j.jsb.2010.08.006 Abrams, 1944, A closed cell for electron microscopy, J Appl Phys, 15, 607, 10.1063/1.1707475 Fukushima, 1985, Injection of liquid into environmental cell for in situ observations, J Electron Microsc, 34, 47 Daulton, 2001, In situ environmental cell–transmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy, Microsc Microanal, 7, 470, 10.1007/S10005-001-0021-3 Gai, 2002, Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis, Top Catal, 21, 161, 10.1023/A:1021333310817 Williamson, 2003, Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface, Nat Mater, 2, 532, 10.1038/nmat944 Creemer, 2008, Atomic-scale electron microscopy at ambient pressure, Ultramicroscopy, 108, 993, 10.1016/j.ultramic.2008.04.014 Zheng, 2009, Observation of single colloidal platinum nanocrystal growth trajectories, Science, 324, 1309, 10.1126/science.1172104 de Jonge, 2009, Electron microscopy of whole cells in liquid with nanometer resolution, Proc Natl Acad Sci U S A, 106, 2159, 10.1073/pnas.0809567106 Suga, 2011, The atmospheric scanning electron microscope with open sample space observes dynamic phenomena in liquid or gas, Ultramicroscopy, 111, 1650, 10.1016/j.ultramic.2011.08.001 Sze, 1998 Hsu, 2008 Harsanyi, 1999, Irregular effect of chloride impurities on migration failure reliability: contradictions or understandable?, Microelectron Reliab, 39, 1407, 10.1016/S0026-2714(99)00079-7 Nishiyama, 2014, Positively charged nanogold label allows the observation of fine cell filopodia and flagella in solution by atmospheric scanning electron microscopy, Microsc Res Tech, 77, 153, 10.1002/jemt.22322 Sato, 2012, Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM), Biochem Biophys Res Commun, 417, 1213, 10.1016/j.bbrc.2011.12.111 Murai, 2011, Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration, J Biol Chem, 286, 1999, 10.1074/jbc.M110.184010 Maruyama, 2012, Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM), J Struct Biol, 180, 259, 10.1016/j.jsb.2012.08.006 Sugiyama, 2011, Application of scanning electron microscope to dislocation imaging in steel, JEOL News, 46, 11 Ahmed, 2006, Characterizing dislocation structure evolution during cyclic deformation using electron channelling contrast imaging, Philos Mag, 86, 4965, 10.1080/14786430600710941 Kamaladasa, 2010, Basic principles and application of electron channeling in a scanning electron microscope for dislocation analysis, 1583 Wilkinson, 1997, Electron diffraction based techniques in scanning electron microscopy of bulk materials, Micron, 28, 279, 10.1016/S0968-4328(97)00032-2 Joy, 1990, 199 Kaneko, 2002, Observation of dislocation structure of fatigued copper single crystals using ECCI method, J-Jpn Inst Metals (In Japanese), 66, 1297, 10.2320/jinstmet1952.66.12_1297 Kaneko, 2003, Observation of dislocation structures of fatigued metallic materials by scanning electron microscopy, JEOL News, 38, 20 Gutierrez-Urrutia, 2009, Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope, Script Mater, 61, 737, 10.1016/j.scriptamat.2009.06.018 Herrera, 2011, Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability, Acta Mater, 59, 4653, 10.1016/j.actamat.2011.04.011 Gutierrez-Urrutia, 2012, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel, Acta Mater, 60, 5791, 10.1016/j.actamat.2012.07.018 Koyama, 2013, Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging, Acta Mater, 61, 4607, 10.1016/j.actamat.2013.04.030 Ng, 1997, Electron channeling contrast imaging of dislocation structures in deformed stoichiometric NiAl, Mater Sci Eng, 239, 150, 10.1016/S0921-5093(97)00574-1 Wilkinson, 1993, Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon, Philos Mag A, 68, 59, 10.1080/01418619308219357 Kuwano, 2010, Scanning electron microscope observation of dislocations in semiconductor and metal materials, J Electron Microsc, 59, S175, 10.1093/jmicro/dfq045 Reed, 1997 Reed, 2005 Schlosser, 2010, Expanding the detection efficiency of silicon drift detectors, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 624, 270, 10.1016/j.nima.2010.04.038 Gatti, 1990, Suboptimal filtering of 1/ƒ-noise in detector charge measurements, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 297, 467, 10.1016/0168-9002(90)91331-5 Bertuccio, 1996, Criteria of choice of the front-end transistor for low-noise preamplification of detector signals at sub-microsecond shaping times for X- and gamma-ray spectroscopy, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 380, 301, 10.1016/S0168-9002(96)00474-3 McCarthy, 2009, Impact of 40 years of technology advances on EDS system performance, Microsc Microanal, 15, 484, 10.1017/S1431927609990390 Lechner, 1996, Silicon drift detectors for high resolution room temperature X-ray spectroscopy, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 377, 346, 10.1016/0168-9002(96)00210-0 Gatti, 1984, Semiconductor drift chamber—an application of a novel charge transport scheme, Nucl Instrum Methods Phys Res, 225, 608, 10.1016/0167-5087(84)90113-3 Fiorini, 1997, A new detection system for x-ray microanalysis based on a silicon drift detector with Peltier cooling, Rev Sci Instrum, 68, 2461, 10.1063/1.1148169 Strüder, 1998, High-resolution X-ray spectroscopy close to room temperature, Microsc Microanal, 4, 622, 10.1017/S1431927698980606 Terasaki, 2013, Novel structural characterisations of insulating and electron beam sensitive materials employing low voltage high resolution scanning electron microscopy, JEOL News, 48, 21 Newbury, 2006, The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector, Microsc Microanal, 12, 26, 10.1017/S143192760606020X Irwin, 1996, X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback, Appl Phys Lett, 69, 1945, 10.1063/1.117630 Tanaka, 2005, High-Energy resolution microcalorimeter EDS system for electron beam excitation, J Surf Anal, 12, 122 Terauchi, 2010, Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes—an introduction of valence electron spectroscopy for transmission electron microscopy, J Electron Microsc, 59, 251, 10.1093/jmicro/dfq010 Takahashi, 2010, A soft X-ray emission spectrometer with high-energy resolution for electron probe microanalysis, J Electron Microsc, 16, 34 Rose, 1990, Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik, 85, 19 Haider, 1995, Correction of the spherical aberration of a 200 kV TEM by means of a Hexapole-corrector, Optik, 99, 167 Krivanek, 1999, Towards sub-electron beams, Ultramicroscopy, 78, 1, 10.1016/S0304-3991(99)00013-3 Sawada, 2009, Correction of higher order geometrical aberration by triple 3-fold astigmatism field, J Electron Microsc, 58, 341, 10.1093/jmicro/dfp033 Krivanek, 2003, Towards sub-0.5 electron beams, Ultramicroscopy, 96, 229, 10.1016/S0304-3991(03)00090-1 Zach, 1995, Aberration correction in a low voltage SEM by a multipole corrector, Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip, 363, 316, 10.1016/0168-9002(95)00056-9 Honda, 2003, Chromatic and spherical aberration correction in the LSI inspection scanning electron microscope, JEOL News, 38, 36 Uno, 2005, Aberration correction and its automatic control in scanning electron microscopes, Optik-Int J Light Electron Opt, 116, 438, 10.1016/j.ijleo.2005.03.001 Kazumori, 2004, Field emission SEM with a spherical and chromatic aberration corrector, Microsc Microanal, 10, 1370, 10.1017/S1431927604881352 Kawasaki, 2009, Developing an aberration-corrected Schottky emission SEM and method for measuring aberration, Microelectron Eng, 86, 1017, 10.1016/j.mee.2009.01.083 Mackie, 1992, Field emission from hafnium carbide, J Vac Sci Technol Vac Surf Film, 10, 2852, 10.1116/1.577719 Zhang, 2010, Nanostructured LaB6 field emitter with lowest apical work function, Nano Lett, 10, 3539, 10.1021/nl101752z Mukai, 2006, Monochromator for a 200 kV Analytical electron microscope, Microsc Microanal, 12, 1206, 10.1017/S1431927606064816