Large magnetocaloric effect, magnetic and electronic properties in Ho3Pd2 compound: Ab initio calculations and Monte Carlo simulations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wolf, 2011, Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point, Proc. Natl. Acad. Sci., 108, 6862, 10.1073/pnas.1017047108
Vodyanoy, 2013, The physical nature of “giant” magnetocaloric and electrocaloric effects, Am. J. Mater. Sci., 3, 105
Narayana, 2016, Magnetocaloric effect and nature of magnetic transition in low dimensional DyCu2, J. Alloy. Compd., 683, 56, 10.1016/j.jallcom.2016.05.042
Fabris, 2007, Magnetocaloric effect and magnetic properties of Tb0.9Sn0.1MnO3, J. Appl. Phys., 101, 103904, 10.1063/1.2732453
Gschneidner, 1999, Recent developments in magnetic refrigeration, vol. 315, 69
Phejar, 2010, Structural and magnetic properties of magnetocaloric LaFe13–xSix compounds synthesized by high energy ball milling, Intermetallics, 18, 2301, 10.1016/j.intermet.2010.07.022
Kuzmin, 2007, Mechanism of the strong magnetic refrigerant performance of LaFe13–xSix, Phys. Rev. B, 76, 092401, 10.1103/PhysRevB.76.092401
Dubenko, 2009, Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X= Ga, Sb, In. J. Magn. Magn. Mater., 321, 754, 10.1016/j.jmmm.2008.11.043
Tishin, 2016
Zheng, 2016, Large magnetocaloric effect in Er12Co7 compound and the enhancement of δTFWHM by Ho-substitution, J. Alloy. Compd., 680, 617, 10.1016/j.jallcom.2016.04.216
Wu, 2019, Magnetic properties and large magnetocaloric effect in Ho3Pd2 compound, J. Magn. Magn. Mater., 482, 168, 10.1016/j.jmmm.2019.03.048
Blaha, 2001
Perdew, 1996, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54, 16533, 10.1103/PhysRevB.54.16533
Masrour, 2016, Monte Carlo simulation study of magnetocaloric effect in NdMnO3 perovskite, J. Magn. Magn. Mater., 401, 91, 10.1016/j.jmmm.2015.10.019
Masrour, 2016, Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite, Chin. Phys. B, 25, 10.1088/1674-1056/25/8/087502
Masrour, 2017, Modeling of the magnetocaloric effect in Heusler Ni2MnGa alloy: Ab initio calculations and Monte Carlo simulations, Intermetallics, 91, 120, 10.1016/j.intermet.2017.08.012
Masrour, 2010, Magnetic properties of B and AB-spinels Zn1− xMxFe2O4(M= Ni, Mg) materials, J. Alloy. Compd., 503, 299, 10.1016/j.jallcom.2010.05.024
Ferrenberg, 1988, New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett., 61, 2635, 10.1103/PhysRevLett.61.2635
Wu, 2019, Strain-tunable magnetic and electronic properties of monolayer CrI3, PCCP, 21, 7750, 10.1039/C8CP07067A
Gunver, 2018, Research, 24, 64
Galanakis, 2007, Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles, J. Phys: Condens. Mat., 19
Naher, 2018, Structural, elastic, electronic, and bonding properties of intermetallic Nb3Pt and Nb3Os compounds: a DFT study Eur, Phys. J. B., 91, 289
Martinez, 2002, Phys. Rev. B, 66
Tishin, 2016, 476
Mo, 2015, Magnetic properties and magnetocaloric effects in HoPd intermetallic, Chin. Phys. B, 24, 10.1088/1674-1056/24/3/037503
Jun, 2010, Order of magnetic transition and large magnetocaloric effect in Er3Co, Chin. Phys. B, 19, 10.1088/1674-1056/19/4/047502
Phan, 2008, Long-range ferromagnetism and giant magnetocaloric effect in type VIII Eu8Ga16Ge30 clathrates, Appl. Phys. Lett., 93, 10.1063/1.3055833
Li, 2012, Study of the magnetic properties and magnetocaloric effect in RCo2B2 (R= Tb, Dy and Ho) compounds, Intermetallics, 23, 101, 10.1016/j.intermet.2011.12.002
Maji, 2018, Magnetic properties and large reversible magnetocaloric effect in Er3Pd2, J. Magn. Magn. Mater., 456, 236, 10.1016/j.jmmm.2018.02.036
Itoh, 2008, J. Phys. Soc. Japan, 77
Yelland, 2005, Phys Rev. B, 72
Yang, 2011, Phys. Rev. B, 83