Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Favero, 2009, Optomechanics of deformable optical cavities, Nat. Photon., 3, 201, 10.1038/nphoton.2009.42
Dong, 2012, Review on piezoelectric, ultrasonic and magnetoelectric actuators, J. Adv. Dielectr., 2, 10.1142/S2010135X12300010
Zhang, 2018, Recent developments in piezoelectric crystals, J. Korean Ceram. Soc., 55, 419, 10.4191/kcers.2018.55.5.12
Rodel, 2015, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc., 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013
Hong, 2016, Lead-free piezoceramics – where to move on?, J. Materiomics, 2, 1, 10.1016/j.jmat.2015.12.002
Rodel, 2009, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x
Catalan, 2009, Physics and applications of bismuth ferrite, Adv. Mater., 21, 2463, 10.1002/adma.200802849
Sung, 2010, notRoles of lattice distortion in (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Appl. Phys. Lett., 96, 10.1063/1.3428580
Wang, 2018, BiFeO-BaTiO: a new generation of lead-free electroceramics, J. Adv. Dielectr., 8, 10.1142/S2010135X18300049
Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl. Phys. Lett., 91
Liu, 2016, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics, Adv. Mater., 28, 574, 10.1002/adma.201503768
Zeches, 2009, A strain-driven morphotropic phase boundary in BiFeO3, Science, 326, 977, 10.1126/science.1177046
Liu, 2019, In situ study of electric-field-induced ferroelectric and antiferromagnetic domain switching in polycrystalline BiFeO3, J. Am. Ceram. Soc., 102, 1768, 10.1111/jace.16014
Leontsev, 2009, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO(3) ceramics, J. Am. Ceram. Soc., 92, 2957, 10.1111/j.1551-2916.2009.03313.x
Murakami, 2018, High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers, J. Am. Ceram. Soc., 101, 5428, 10.1111/jace.15749
Wang, 2018, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics, ACS Appl. EnergY Mater., 1, 4403, 10.1021/acsaem.8b01099
Fu, 2019, Large and temperature-insensitive piezoelectric strain in xBiFeO3-(1-x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics, J. Mater. Sci., 54, 1153, 10.1007/s10853-018-2926-8
Fujii, 2016, Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics, Appl. Phys. Lett., 108, 10.1063/1.4948264
Kim, 2018, Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi0.5Na0.5)TiO3:0.15BaTiO(3) green ceramics by electrophoretic deposition, J. Ceram. Soc. Jpn., 126, 316, 10.2109/jcersj2.17259
Leontsev, 2011, Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO(3) solid solution, J. Mater. Res., 26, 9, 10.1557/jmr.2010.44
Zheng, 2015, Novel BiFeO-BaTiO-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors, J. Am. Ceram. Soc., 98, 3670, 10.1111/jace.13989
Li, 2017, Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 100, 5573, 10.1111/jace.15079
J. Rodriguez-Carvajal, Fullprof A. Rietveld Refinement and Pattern Matching Analysis Program. Laboratory Leon Brillouin (CEA-CNRS). France (1990).
Hossain, 2016, A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements, J. Synchrotron Radiat., 23, 694, 10.1107/S1600577516005075
Wang, 2019, High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics, Scr. Mater., 164, 62, 10.1016/j.scriptamat.2019.01.028
Gao, 2018, Large electric-field-induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 101, 3383, 10.1111/jace.15499
Lee, 2015, High-performance lead-free piezoceramics with high curie temperatures, Adv. Mater., 27, 6976, 10.1002/adma.201502424
Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J. App. Phys., 103
Zheng, 2017, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ. Sci., 10, 528, 10.1039/C6EE03597C
Zheng, 2018, Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature, Scr. Mater., 155, 11, 10.1016/j.scriptamat.2018.06.007
Wang, 2017, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics, J. Eur. Ceram. Soc., 37, 1857, 10.1016/j.jeurceramsoc.2016.10.027
Zhu, 2018, Temperature independence of piezoelectric properties for high-performance BiFeO3-BaTiO3 lead-free piezoelectric ceramics up to 300 °C, RSC Adv., 8, 35794, 10.1039/C8RA07553K
Narayan, 2018, Electrostrain in excess of 1% in polycrystalline piezoelectrics, Nat. Mater., 17, 427, 10.1038/s41563-018-0060-2
Rojac, 2011, Large electric-field induced strain in BiFeO3 ceramics, J. Am. Ceram. Soc., 94, 4108, 10.1111/j.1551-2916.2011.04861.x
Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773
Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater., 55, 1849, 10.1016/j.actamat.2006.10.046
Viehland, 1990, Freezing of the polarization fluctuations in lead magnesiun niobate relaxors, J. Appl. Phys., 68, 2916, 10.1063/1.346425
Hall, 2004, A high energy synchrotron X-ray study of crystallographic texture and lattice strain in soft lead zirconate titanate ceramics, J. Appl. Phys., 96, 4245, 10.1063/1.1787590
Daymond, 2004, The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks, J. Appl. Phys., 96, 4263, 10.1063/1.1794896
Liu, 2018, Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.055501
Fan, 2016, Unique piezoelectric properties of the monoclinic phase in Pb(Zr,Ti)O3 ceramics: large lattice strain and negligible domain switching, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.027601
