Origin of large electric-field-induced strain in pseudo-cubic BiFeO3–BaTiO3 ceramics

Acta Materialia - Tập 197 - Trang 1-9 - 2020
Jianguo Chen1,2, J. Daniels3, Jie Jian2, Zhenxiang Cheng1, Jinrong Cheng2, Jianli Wang1, Qinfen Gu4, Shujun Zhang1
1Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, Australia
2School of Materials Science and Engineering, Shanghai University, Shanghai, People’s Republic of China
3School of Materials Science and Engineering, UNSW Australia, NSW 2052, Australia
4Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Favero, 2009, Optomechanics of deformable optical cavities, Nat. Photon., 3, 201, 10.1038/nphoton.2009.42

Dong, 2012, Review on piezoelectric, ultrasonic and magnetoelectric actuators, J. Adv. Dielectr., 2, 10.1142/S2010135X12300010

Zhang, 2018, Recent developments in piezoelectric crystals, J. Korean Ceram. Soc., 55, 419, 10.4191/kcers.2018.55.5.12

Rodel, 2015, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc., 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013

Hong, 2016, Lead-free piezoceramics – where to move on?, J. Materiomics, 2, 1, 10.1016/j.jmat.2015.12.002

Rodel, 2009, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x

Catalan, 2009, Physics and applications of bismuth ferrite, Adv. Mater., 21, 2463, 10.1002/adma.200802849

Sung, 2010, notRoles of lattice distortion in (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ceramics, Appl. Phys. Lett., 96, 10.1063/1.3428580

Wang, 2018, BiFeO-BaTiO: a new generation of lead-free electroceramics, J. Adv. Dielectr., 8, 10.1142/S2010135X18300049

Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system, Appl. Phys. Lett., 91

Liu, 2016, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics, Adv. Mater., 28, 574, 10.1002/adma.201503768

Zeches, 2009, A strain-driven morphotropic phase boundary in BiFeO3, Science, 326, 977, 10.1126/science.1177046

Liu, 2019, In situ study of electric-field-induced ferroelectric and antiferromagnetic domain switching in polycrystalline BiFeO3, J. Am. Ceram. Soc., 102, 1768, 10.1111/jace.16014

Leontsev, 2009, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO(3) ceramics, J. Am. Ceram. Soc., 92, 2957, 10.1111/j.1551-2916.2009.03313.x

Murakami, 2018, High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers, J. Am. Ceram. Soc., 101, 5428, 10.1111/jace.15749

Wang, 2018, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics, ACS Appl. EnergY Mater., 1, 4403, 10.1021/acsaem.8b01099

Fu, 2019, Large and temperature-insensitive piezoelectric strain in xBiFeO3-(1-x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics, J. Mater. Sci., 54, 1153, 10.1007/s10853-018-2926-8

Fujii, 2016, Electric field induced lattice strain in pseudocubic Bi(Mg1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics, Appl. Phys. Lett., 108, 10.1063/1.4948264

Kim, 2018, Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi0.5Na0.5)TiO3:0.15BaTiO(3) green ceramics by electrophoretic deposition, J. Ceram. Soc. Jpn., 126, 316, 10.2109/jcersj2.17259

Leontsev, 2011, Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO(3) solid solution, J. Mater. Res., 26, 9, 10.1557/jmr.2010.44

Zheng, 2015, Novel BiFeO-BaTiO-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors, J. Am. Ceram. Soc., 98, 3670, 10.1111/jace.13989

Li, 2017, Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 100, 5573, 10.1111/jace.15079

J. Rodriguez-Carvajal, Fullprof A. Rietveld Refinement and Pattern Matching Analysis Program. Laboratory Leon Brillouin (CEA-CNRS). France (1990).

Hossain, 2016, A sample cell for in situ electric-field-dependent structural characterization and macroscopic strain measurements, J. Synchrotron Radiat., 23, 694, 10.1107/S1600577516005075

Wang, 2019, High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics, Scr. Mater., 164, 62, 10.1016/j.scriptamat.2019.01.028

Gao, 2018, Large electric-field-induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 101, 3383, 10.1111/jace.15499

Lee, 2015, High-performance lead-free piezoceramics with high curie temperatures, Adv. Mater., 27, 6976, 10.1002/adma.201502424

Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties, J. App. Phys., 103

Zheng, 2017, The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ. Sci., 10, 528, 10.1039/C6EE03597C

Zheng, 2018, Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature, Scr. Mater., 155, 11, 10.1016/j.scriptamat.2018.06.007

Wang, 2017, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics, J. Eur. Ceram. Soc., 37, 1857, 10.1016/j.jeurceramsoc.2016.10.027

Zhu, 2018, Temperature independence of piezoelectric properties for high-performance BiFeO3-BaTiO3 lead-free piezoelectric ceramics up to 300 °C, RSC Adv., 8, 35794, 10.1039/C8RA07553K

Narayan, 2018, Electrostrain in excess of 1% in polycrystalline piezoelectrics, Nat. Mater., 17, 427, 10.1038/s41563-018-0060-2

Rojac, 2011, Large electric-field induced strain in BiFeO3 ceramics, J. Am. Ceram. Soc., 94, 4108, 10.1111/j.1551-2916.2011.04861.x

Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773

Kungl, 2007, Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data, Acta Mater., 55, 1849, 10.1016/j.actamat.2006.10.046

Viehland, 1990, Freezing of the polarization fluctuations in lead magnesiun niobate relaxors, J. Appl. Phys., 68, 2916, 10.1063/1.346425

Hall, 2004, A high energy synchrotron X-ray study of crystallographic texture and lattice strain in soft lead zirconate titanate ceramics, J. Appl. Phys., 96, 4245, 10.1063/1.1787590

Daymond, 2004, The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks, J. Appl. Phys., 96, 4263, 10.1063/1.1794896

Liu, 2018, Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.055501

Fan, 2016, Unique piezoelectric properties of the monoclinic phase in Pb(Zr,Ti)O3 ceramics: large lattice strain and negligible domain switching, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.027601

Wang, 2019, Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics, J. Mater. Chem. A, 7, 21254, 10.1039/C9TA07904A