Modeling Macrosegregation during Direct-Chill Casting of Multicomponent Aluminum Alloys

Q. Du1, D.G. Eskin1, L. Katgerman2
1Netherlands Institute for Metals Research, Delft, The Netherlands;
2Delft University of Technology, Delft, The Netherlands

Tóm tắt

A macrosegregation model for direct chill casting of multicomponent aluminum alloys is implemented using the macroscopic transfer model, microsegregation model, and phase diagram calculation module, and applied to an Al-Cu-Mg alloy. The phase diagram calculation module is based on the TQ-Interface of CALPHAD software THERMO-CALC and the mapping technique initially proposed by Dore et al. This mapping technique is modified in arranging the mapping axes where the tabulation is performed to increase the access efficiency. This strategy provides a practical solution for quick access to phase diagram data in modeling macrosegregation of multicomponent alloys. It is found from our simulation that the contribution of each of the solute elements to the solutal buoyancy affects the final segregation pattern. The appropriate choice of the solidification path is important for the shrinkage-induced macrosegregation. The model is applied to a real direct-chill (DC) casting experiment and a reasonable semiquantitative agreement with experimental data has been obtained, though the model does not take into account the possible contribution of floating grains and exudation.

Tài liệu tham khảo

M.C. Flemings, G.E. Nereo: Trans. TMS-AIME, 1967, vol. 239, pp. 1449–61 C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64 J. Ni, C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61 W.D. Bennon, F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70 C. Beckermann: Int. Mater. Rev., 2002, vol. 47 (5), pp. 243–61 M.J.M Krane, F.P. Incropera: Int. J. Heat Mass Transfer, 1997, vol. 40 (16), pp. 3827–35 M.J.M. Krane, F.P. Incropera: Int. J. Heat Mass Transfer, 1997, vol. 40 (16), pp. 3837–47 L. Thuinet, H. Combeau: J. Mater. Sci., 2004, vol. 39, pp. 7213–19 X. Dore, H. Combeau, M. Rappaz: Acta Mater., 2000, vol. 48, pp. 3951–62 P.J. Prescott, F.P. Incropera: Int. J. Heat Mass Transfer, 1991, vol. 34 (9), pp. 2351–59 C.J. Vreeman, H.J.M. Krane, F.P. Incropera: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 687–704 A.V. Reddy, C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 479–89 T.U. Kaempfer, M. Rappaz: Modelling Simul. Mater. Sci. Eng., 2003, vol. 11, pp. 575–97 C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64 H. Combeau, J.-M. Drezet, A. Mo, M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2314–26 Q. Chen, B. Sundman: Mater. Trans., 2002, vol. 43 (3), pp. 551–59 Q. Du, A. Jacot: Acta Mater., 2005, vol. 53, pp. 3479–93 M. Rappaz, V. Voller: Metall. Trans. A, 1990, vol. 21A, pp. 749–53 A. Ludwig, M. Gruber-Pretzler, F. Mayer, A. Ishmurzin, M. Wu: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 485–89 D.G. Eskin, J. Zuidema, V.I. Savran, L. Katgerman: Mater. Sci. Eng. A, 2004, vol. 384, pp. 232–44 Q. Du, D.G. Eskin, and L. Katgerman: in Modelling of Casting, Welding and Advanced Solidification Processes XI, C.-A. Gandin and M. Bellet, eds., TMS, Warrendale, PA, 2006, pp. 235–42 E.A Brandes, G.B Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, United Kingdom, 1992 A.E. Vol: Handbook of Binary Metallic Systems: Structure and Properties, Vol. 1, Israel Program for Scientific Translations, Jerusalem, 1966 V.I. Dobatkin: Continuous Casting and Casting Properties of Alloys, Oborongiz, Moscow, 1948 R. Mehrabian, M. Keane, M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 1209–20 D.G. Eskin, Q. Du, L. Katgerman: Scripta Mater., 2006, vol. 55, pp. 715–18 S. Asai, I. Muchi: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 90–98 C.J. Vreeman, H.J.M. Krane, F.P. Incropera: Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 677–86