Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes

Electrochimica Acta - Tập 293 - Trang 260-272 - 2019
Saleheen Bano1, Yuvraj S. Negi1, Rajith Illathvalappil2,3, Sreekumar Kurungot2,3, K. Ramya4
1Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
2Academy of Scientific and Innovative Research(AcIR), New Delhi, India
3Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (NCL), Pune, India
4Centre for Fuel Cell Technology, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT-M Research Park, Chennai, 600113, India

Tài liệu tham khảo

Mishra, 2012, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci., 37, 842, 10.1016/j.progpolymsci.2011.11.002 Jiang, 2014, Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells, J. Mater. Chem. A., 2, 7637, 10.1039/C4TA00121D Zhang, 2012, Advances in the high performance polymer electrolyte membranes for fuel cells, Chem. Soc. Rev., 41, 2382, 10.1039/c2cs15269j Üregen, 2017, Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 42, 2636, 10.1016/j.ijhydene.2016.07.009 Zhang, 2014, Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide, Chem. Commun., 50, 15381, 10.1039/C4CC07791A Rosli, 2017, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy, 42, 9293, 10.1016/j.ijhydene.2016.06.211 Rikukawa, 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 25, 1463, 10.1016/S0079-6700(00)00032-0 Wang, 2011, Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes, Macromolecules, 44, 7296, 10.1021/ma2015968 Asano, 2006, Sulfonated block polyimide copolymers as a proton-conductive membrane, J. Polym. Sci. Part A Polym. Chem., 44, 2744, 10.1002/pola.21361 Li, 2003, Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C, Chem. Mater., 15, 4896, 10.1021/cm0310519 Guo, 2013, Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites, Polym. Polym. Compos., 21, 449 Iulianelli, 2012, Sulfonated PEEK-based polymers in PEMFC and DMFC applications: a review, Int. J. Hydrogen Energy, 37, 15241, 10.1016/j.ijhydene.2012.07.063 Gao, 2017, Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone), J. Membr. Sci., 536, 1, 10.1016/j.memsci.2017.04.065 Fu, 2007, Acid-base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells, Electrochem. Commun., 9, 905, 10.1016/j.elecom.2006.12.001 Di Vona, 2006, A simple new route to covalent organic/inorganic hybrid proton exchange polymeric membranes, Chem. Mater., 18, 69, 10.1021/cm051546t Hou, 2012, Crosslinked SPEEK membranes: mechanical, thermal, and hydrothermal properties, J. Mater. Res., 27, 1950, 10.1557/jmr.2012.151 Hande, 2011, Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM), J. Membr. Sci., 372, 40, 10.1016/j.memsci.2011.01.042 Mikhailenko, 2006, Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone), J. Membr. Sci., 285, 306, 10.1016/j.memsci.2006.08.036 Gupta, 2011, Studies on novel heat treated sulfonated poly(ether ether ketone) [SPEEK]/diol membranes for fuel cell applications, Int. J. Hydrogen Energy, 36, 8525, 10.1016/j.ijhydene.2011.04.044 Gosalawit, 2008, Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs), J. Membr. Sci., 323, 337, 10.1016/j.memsci.2008.06.038 Kim, 2015, A review of polymer -nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36, 10.1016/j.jiec.2014.04.030 Wu, 2015, Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells, J. Power Sources, 273, 544, 10.1016/j.jpowsour.2014.09.134 Moon, 2011, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Scociety Reviews, 40, 3941, 10.1039/c0cs00108b Xing, 2004, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci., 229, 95, 10.1016/j.memsci.2003.09.019 Muthu Lakshmi, 2005, Sulphonated poly(ether ether ketone): synthesis and characterisation, J. Mater. Sci., 40, 629, 10.1007/s10853-005-6300-2 Wu, 2006, Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid-base polymer blends for direct methanol fuel cell application, J. Polym. Sci., Part B: Polym. Phys., 44, 565, 10.1002/polb.20717 Bano, 2017, Studies on cellulose nanocrystals isolated from groundnut shells, Carbohydr. Polym., 157, 1041, 10.1016/j.carbpol.2016.10.069 Mikhailenko, 2004, Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK), J. Membr. Sci., 233, 93, 10.1016/j.memsci.2004.01.004 Vijayalekshmi, 2018, Fabrication and comprehensive investigation of physicochemical and electrochemical properties of chitosan-silica supported silicotungstic acid nanocomposite membranes for fuel cell applications, Energy, 142, 313, 10.1016/j.energy.2017.10.019 Gupta, 2012, Sulfonated poly(ether ether ketone)/ethylene glycol/polyhedral oligosilsesquioxane hybrid membranes for fuel cell applications, Int. J. Hydrogen Energy, 37, 5979, 10.1016/j.ijhydene.2011.12.141 Xu, 2018, Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells, Carbohydr. Polym., 184, 299, 10.1016/j.carbpol.2017.12.074 Wang, 2017, The influence of various ionic liquids on the properties of SPEEK membrane doped with mesoporous silica, Electrochim. Acta, 257, 290, 10.1016/j.electacta.2017.10.098 Gong, 2016, A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes, J. Power Sources, 325, 453, 10.1016/j.jpowsour.2016.06.061 Vinothkannan, 2016, Facile enhancement in proton conductivity of sulfonated poly (ether ether ketone) using functionalized graphene oxide—synthesis, characterization, and application towards proton exchange membrane fuel cells, Colloid Polym. Sci., 294, 1197, 10.1007/s00396-016-3877-8 Helen, 2007, Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid, J. Membr. Sci., 292, 98, 10.1016/j.memsci.2007.01.018 M. Ahmed, S. Azizi, F. Alloin, W. Gorecki, J. Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly ( oxyethylene ) and cellulose nanocrystals, J. Phys. Chem. B Norddin, 2009, The effect of blending sulfonated poly(ether ether ketone) with various charged surface modifying macromolecules on proton exchange membrane performance, J. Membr. Sci., 328, 148, 10.1016/j.memsci.2008.12.009 Gupta, 2013, Effect of functionality of polyhedral oligomeric silsesquioxane [POSS] on the properties of sulfonated poly(ether ether ketone) [SPEEK] based hybrid nanocomposite proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy, 38, 12817, 10.1016/j.ijhydene.2013.07.070 Wu, 2016, Synthesis and characterization of cellulose nanocrystal-graft-poly(D-lactide) and its nanocomposite with poly(L-lactide), Polym, 103, 365, 10.1016/j.polymer.2016.09.070 Zarrin, 2011, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C, 115, 20774, 10.1021/jp204610j Hande, 2008, Crosslinking of sulphonated poly (ether ether ketone) using aromatic bis(hydroxymethyl) compound, J. Membr. Sci., 322, 67, 10.1016/j.memsci.2008.05.040 Shirdast, 2016, Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes, J. Power Sources, 306, 541, 10.1016/j.jpowsour.2015.12.076 Heo, 2013, The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells, J. Membr. Sci., 425–426, 11, 10.1016/j.memsci.2012.09.019 Qiu, 2017, Sulfonated reduced graphene oxide as a conductive layer in sulfonated poly(ether ether ketone) nanocomposite membranes, J. Membr. Sci., 524, 663, 10.1016/j.memsci.2016.11.064 Hu, 1999, EPR investigation of HO• radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, J. Mater. Chem., 409 Zhong, 2009, Preparation and properties of UV irradiation-induced crosslinked sulfonated poly(ether ether ketone) proton exchange membranes, J. Membr. Sci., 326, 400, 10.1016/j.memsci.2008.10.029 Zhang, 2010, Preparation and properties of epoxy-based cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications, Renew. Energy, 35, 6409 Gang, 2016, Graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) nanocomposite membrane for direct methanol fuel cell application, J. Membr. Sci., 507, 1, 10.1016/j.memsci.2016.02.004 Sirviö, 2015, Composite films of poly(vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals, ACS Appl. Mater. Interfaces, 7, 19691, 10.1021/acsami.5b04879 Xu, 2013, Cellulose nanocrystals as organic nanofillers for transparent polycarbonate films, J. Nanoparticle Res., 15, 0, 10.1007/s11051-013-1562-0 Grunzinger, 2008, Hyperbranched-linear poly(ether sulfone) blend films for proton exchange membranes, J. Power Sources, 175, 120, 10.1016/j.jpowsour.2007.09.020 Xu, 2011, Sulfonated titania submicrospheres-doped sulfonated poly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reduced methanol permeability, J. Power Sources, 196, 4934, 10.1016/j.jpowsour.2011.02.017 Oh, 2014, Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride nanoflakes, ACS Appl. Mater. Interfaces, 6, 7751, 10.1021/am5010317 Pei, 2006, Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization, J. Power Sources, 160, 949, 10.1016/j.jpowsour.2006.03.028 Wang, 2011, Enhanced high-temperature polymer electrolyte membrane for fuel cells based on polybenzimidazole and ionic liquids, Electrochim. Acta, 56, 2842, 10.1016/j.electacta.2010.12.069 Shabani, 2011, Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications, J. Membr. Sci., 368, 233, 10.1016/j.memsci.2010.11.048 Zhong, 2007, Crosslinked SPEEK/AMPS blend membranes with high proton conductivity and low methanol diffusion coefficient for DMFC applications, J. Power Sources, 168, 154, 10.1016/j.jpowsour.2007.03.028 Hu, 2018, A thermally crosslinked multiblock sulfonated poly(arylene ether ketone nitrile) copolymer with a 1,2,3-triazole pendant for proton conducting membranes, J. Mater. Chem., 6, 3560, 10.1039/C7TA10290A Li, 2014, Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks, J. Power Sources, 262, 372, 10.1016/j.jpowsour.2014.03.123 Boneti, 2017, Influence of casting heterogeneities on microstructure and mechanical properties of austempered ductile iron (ADI), Rev. Mater., 22 Feng, 2017, Nitrile functionalized graphene oxide for highly selective sulfonated poly(arylene ether nitrile)-based proton-conducting membranes, RSC Adv., 7, 2971, 10.1039/C6RA26946J