Accelerated 3D Coronary Vessel Wall MR Imaging Based on Compressed Sensing with a Block-Weighted Total Variation Regularization
Tóm tắt
Coronary vessel wall magnetic resonance (MR) imaging is important for heart disease diagnosis but often suffers long scan time. Compressed sensing (CS) has been previously used to accelerate MR imaging by reconstructing an MR image from undersampled k-space data using a regularization framework. However, the widely used regularizations in the current CS methods often lead to smoothing effects and thus are unable to reconstruct the coronary vessel walls with sufficient resolution. To address this issue, a novel block-weighted total variation regularization is presented to accelerate the coronary vessel wall MR imaging. The proposed regularization divides the image into two parts: a region-of-interest (ROI) which contains the coronary vessel wall, and the other region with less concerned features. Different penalty weights are given to the two regions. As a result, the small details within ROI do not suffer from over-smoothing while the noise outside the ROI can be significantly suppressed. Results with both numerical simulations and in vivo experiments demonstrated that the proposed method can reconstruct the coronary vessel wall from undersampled k-space data with higher qualities than the conventional CS with the total variation or the edge-preserved total variation.
Tài liệu tham khảo
N. Varma, R. Hinojar, D. D’Cruz, E.A. Ucar, A. Indermuehle, S. Peel, G. Greil, N. Gaddum, P. Chowienczyk, E. Nagel, R.M. Botnar, V.O. Puntmann, J. Am. Coll. Cardiol. Imaging 7(8), 762–770 (2014)
J. Pang, B. Sharif, Z. Fan, X. Bi, R. Arsanjani, D.S. Berman, D. Li, Magn. Reson. Imaging 72(5), 1208–1217 (2014)
T. Ishimoto, Y. Taniguchi, T. Miyati, M. Kawakami, M. Ishihara, BMC Med. Imaging 15(1), 26 (2015)
R.M. Botnar, M. Stuber, K.V. Kissinger, W.Y. Kim, E. Spuentrup, W.J. Manning, Circulation 102(21), 2582–2587 (2000)
W.Y. Kim, M. Stuber, P. Börnert, K.V. Kissinger, W.J. Manning, R.M. Botnar, Circulation 106(3), 296–299 (2002)
G. Ginami, J. Yerly, P.G. Masci, M. Stuber, Magn. Reson. Med. (2016)
M. Henningsson, C. Prieto, A. Chiribiri, G. Vaillant, R. Razavi, R.M. Botnar, Magn. Reson. Med. 71(1), 173–181 (2014)
E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
E.J. Candès, C. R. Math. 346(9), 589–592 (2008)
U. Gamper, P. Boesiger, S. Kozerke, Magn. Reson. Med. 59(2), 365–373 (2008)
M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, M. Lustig, IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)
D. Liang, B. Liu, J. Wang, L. Ying, Magn. Reson. Med. 62(6), 1574–1584 (2009)
G. Xie, Y. Song, C. Shi, X.M. Feng, H. Zheng, D. Weng, B. Qiu, X. Liu, Magn. Reson. Imaging 32(2), 175–183 (2014)
Z. Tian, X. Jia, K. Yuan, T. Pan, S.B. Jiang, Phys. Med. Biol. 56(18), 5949 (2011)
D. Liang, H. Wang, Y. Chang, L. Ying, Magn. Reson. Med. 65(5), 1384–1392 (2011)
H. Zhang, L. Cheng, J. Li, Sci. China Inf. Sci. 55(9), 2109–2118 (2012)
D.L. Donoho, IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58(6), 1182–1195 (2007)
T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2(2), 323–343 (2009)
N. Ahmed, T. Natarajan, K.R. Rao, IEEE Trans. Comput. 1, 90–93 (1974)
X. Qu, W. Zhang, D. Guo, C. Cai, S. Cai, Z. Chen, Inverse Probl. Sci. Eng. 18(6), 737–758 (2010)
S. Ravishankar, Y. Bresler, IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)
S. Wundrak, J. Paul, J. Ulrici, E. Hell, V. Rasche, IEEE Trans. Med. Imaging 34(6), 1262–1269 (2015)
G. Xie, X. Bi, J. Liu, Q. Yang, Y. Natsuaki, A.H. Conte, X. Liu, K. Li, D. Li, Z. Fan, Magn. Reson. Med. 75(3), 997–1007 (2015)
S. Wundrak, J. Paul, J. Ulrici, E. Hell, M.A. Geibel, P. Bernhardt, W. Rottbauer, V. Rasche, Magn. Reson. Med. 75(6), 2372–2378 (2016)