Magnetic induction measurements and identification of the permeability of Magneto-Rheological Elastomers using finite element simulations
Tài liệu tham khảo
M. Jolly, J. Carlson, B. Munoz, T. Bullions, The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix, 7 (1996) 613–622, Journal of Intelligent Material Systems and Structures. http://dx.doi.org/10.1177/1045389X9600700601.
J. Ginder, M. Nichols, L. Elie, J. Tardiff, Magnetorheological elastomers: properties and applications, in: Smart Structures and Materials, 1999. http://dx.doi.org/10.1117/12.352787.
M. Lokander, Performance of magnetorheological rubber materials (Doctoral thesis), Department of Fibre and Polymer Technology Royal Institute of Technology Stockholm, 2004. URL 〈www.diva-portal.org/smash/get/diva2:8859/FULLTEXT01.pdf〉.
X. Gong, G. Liao, S. Xuan, Full-field deformation of magnetorheological elastomer under uniform magnetic field, 100, 2012, Applied Physics Letters. http://dx.doi.org/10.1063/1.4722789.
G. Diguet, E. Beaugnon, J. Cavaille, Shape effect in the magnetostriction of ferromagnetic composite, 322 (2010) 3337–3341, Journal of Magnetism and Magnetic Materials. http://dx.doi.org/10.1016/j.jmmm.2010.06.020.
W. Li, K. Kostidis, X. Zhang, Y. Zhou, Development of a force sensor working with MR elastomers, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, IEEE, 2009. http://dx.doi.org/10.1109/AIM.2009.5230010.
I. Bica, Compressibility modulus and principal deformations in magneto-rheological elastomer: the effect of the magnetic field, 15 (2009) 773–776, Journal of Industrial and Engineering Chemistry. http://dx.doi.org/10.1016/j.jiec.2009.09.028.
I. Bica, Magnetoresistor sensor with magnetorheological elastomers, Journal of Industrial and Engineering Chemistry, 17 (2011) 83–89. http://dx.doi.org/10.1016/j.jiec.2010.12.001.
X. Wang, F. Gordaninejad, M. Calgar, Y. Liu, J. Sutrisno, A. Fuchs, Sensing behavior of magnetorheological elastomers, 131, 2009, Journal of Mechanical Design. http://dx.doi.org/10.1115/1.3160316.
A. Boczkowska, S. Awietjan, Microstructure and properties of magnetorheological elastomers, Advanced Elastomers - Technology, Properties and Applications, D.Sc. Anna Boczkowska (Ed.), ISBN: 978-953-51-0739-2, InTech, 2012. http://dx.doi.org/10.5772/50430.
J. Zeng, Y. Guo, Y. Li, J. Zhu, J. Li, Two-dimensional magnetic property measurement for magneto-rheological elastomer, 113, 2013, Journal of Applied Physics, http://dx.doi.org/10.1063/1.4796046.
R. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, 34 (2004) 484–502, Computational Mechanics. http://dx.doi.org/10.1007/s00466-004-0593-y.
J.d. Vicente, G. Bossis, S. Lacis, M. Guyot, Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions, 251 (2002) 100–108, Journal of Magnetism and Magnetic Particles. http://dx.doi.org/10.1016/S0304-8853(02)00484-5.
Nimr, 2010, Particle size distribution, magnetic permeability and dc conductivity of nano-structured and bulk LiNiZn-ferrite samples, J. Magn. Magn. Mater., 322, 2108, 10.1016/j.jmmm.2010.01.042
Kony, 2003, Study of the temperature dependence of both permeability and selectivity of Mg Zn hexaferrites, J. Magn. Magn. Mater., 267, 46, 10.1016/S0304-8853(03)00303-2
J.J. Morton, Magnetic Properties of Materials—Part 3: Measurements and Applications, University College London, 2012, p. 12.
H. Göktürk, T. Fiske, D. Kalyon, Electric and magnetic properties of a thermoplastic elastomer incorporated with ferromagnetic powders, 29 (1993) 4170–4176, IEEE Transactions on Magnetics. http://dx.doi.org/10.1109/20.280866.
F.S. Bellucci, F.C.L. de Almeida, M.A.L. Nobre, M.A. Rodrguez-Perez, A.T. Paschoalini, A.E. Job, Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers, Compos. Part B 85 (2016) 196–206.
P. Marcon, K. Ostanina, Overview of methods for magnetic susceptibility measurement, in: PIERS Proceedings, 2012.
Favennec, 2002, Identification of magnetic parameters by inverse analysis coupled with finite-element modeling, IEEE Trans. Magn., 38, 3607, 10.1109/TMAG.2002.804815
Marello, 2010, Magnetic basement study in the barents sea from inversion and forward modelling, Tectonophysics, 493, 153, 10.1016/j.tecto.2010.07.014
Jiang, 2015, Imaging shallow three dimensional water-bearing structures using magnetic resonance tomography, J. Appl. Geophys., 116, 17, 10.1016/j.jappgeo.2015.02.008
Mukherjee, 2013, Inverse mapping of magnetic flux leakage signal for defect characterization, NDT&E Int., 54, 198, 10.1016/j.ndteint.2012.11.001
Jiles, 1998
J. Martin, R. Anderson, D. Read, G. Gulley, Magnetostriction of field-structured magnetoelastomers, vol. 74, Phys. Rev. E, American Physical Society, 2006. http://dx.doi.org/10.1103/PhysRevE.74.051507.
A. Sihvola, I. Lindell, Homogenisation problems of mixtures involving non-isotropic constituent materials, Electromagnetics Laboratory, Helsinki University of Technology, 1997. URL 〈www.maths.gla.ac.uk/events/tropics/proc/ps/P70_SIH2.PS〉.
D. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, vol. 416, Dielektrizitaetskonstanten und Leitfaehigkeiten der Mischkoerper aus isotropen Substanzen: Annalen der Physik, WILEY-VCH Verlag, 1935, pp. 636–664. http://dx.doi.org/10.1002/andp.19354160705.
G. Schubert, Manufacture, Characterisation and modelling of magneto-rheological elastomers (Ph.D. thesis), University of Glasgow School of Engineering, 2014.
Comsol, Comsol Multiphysics 4.2 Documentation, © 1998-2011 COMSOL, 2011. URL 〈http://www.comsol.com/comsol-multiphysics〉, retrieved 06/2014.
Supplier: First4Magnets, Technical Data of Neodymium N52 Magnets 50×50×25 mm, 2011. URL 〈www.first4magnets.com〉.