A critical synthesis of thermophysical characteristics of nanofluids

International Journal of Heat and Mass Transfer - Tập 54 - Trang 4410-4428 - 2011
Khalil Khanafer1,2, Kambiz Vafai3
1Vascular Mechanics Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
2Vascular Mechanics Laboratory, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI 48109, USA
3Mechanical Engineering Department, University of California, Riverside, CA 92521, USA

Tài liệu tham khảo

Choi, 2009, Nanofluids: from vision to reality through research, J. Heat Transfer, 131, 1, 10.1115/1.3056479 Wong, 2010, Applications of nanofluids: current and future, Adv. Mech. Eng., 2010, 1, 10.1155/2010/519659 Bianco, 2009, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng., 29, 3632, 10.1016/j.applthermaleng.2009.06.019 Shafahi, 2010, Thermal performance of flat-shaped heat pipes using nanofluids, Int. J. Heat Mass Transfer, 53, 1438, 10.1016/j.ijheatmasstransfer.2009.12.007 Shafahi, 2010, An investigation of the thermal performance of cylindrical heat pipes using nanofluids, Int. J. Heat Mass Transfer, 53, 376, 10.1016/j.ijheatmasstransfer.2009.09.019 Khanafer, 2003, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639, 10.1016/S0017-9310(03)00156-X Khaled, 2005, Heat transfer enhancement through control of thermal dispersion effects, Int. J. Heat Mass Transfer, 48, 2172, 10.1016/j.ijheatmasstransfer.2004.12.035 J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, in: 1996 Fall Meeting of the Materials Research Society (MRS), Boston, USA. Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218 Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684 S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems, in: 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA. Ali, 2003, Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions, Int. J. Energy Res., 27, 725, 10.1002/er.908 Putra, 2003, Natural convection of nanofluids, Heat Mass Transfer, 39, 775, 10.1007/s00231-002-0382-z Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3 Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, 125, 151, 10.1115/1.1532008 Pak, 1999, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559 Yang, 2005, Transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48, 1107, 10.1016/j.ijheatmasstransfer.2004.09.038 Wen, 2005, Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids, J. Nanopart. Res., 7, 265, 10.1007/s11051-005-3478-9 Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4 Das, 2003, Pool boiling characteristics of nanofluids, Int. J. Heat Mass transfer, 46, 851, 10.1016/S0017-9310(02)00348-4 Das, 2003, Pool boiling of nanofluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 1237, 10.1016/S0301-9322(03)00105-8 Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080 Kim, 2004, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 16, 2395, 10.1063/1.1739247 A.G.A. Nanna, T. Fistrovich, K. Malinski, S.U.S. Choi, Thermal transport phenomena in buoyancy-driven nanofluids, in Proceedings of 2005 ASME International Mechanical Engineering Congress and RD&D Exposition, 15–17 November 2004, Anaheim, California, USA. A.G.A. Nnanna, M. Routhu, Transport phenomena in buoyancy-driven nanofluids – Part II, in: Proceedings of 2005 ASME Summer Heat Transfer Conference, 17–22 July 2005, San Francisco, California, USA. Ding, 2007, Heat transfer intensification using nanofluids, J. Particle Powder, 25, 23, 10.14356/kona.2007006 Chang, 2008, Natural convection of microparticle suspensions in thin enclosures, Int. J. Heat Mass Transfer, 51, 1332, 10.1016/j.ijheatmasstransfer.2007.11.030 Ho, 2010, Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study, Int. J. Therm. Sci., 49, 1345, 10.1016/j.ijthermalsci.2010.02.013 Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010 Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids, Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2 Eastman, 2004, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621 Evans, 2006, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 93116, 10.1063/1.2179118 Yu, 2003, The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801 Yu, 2004, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model, J. Nanopart. Res., 6, 355, 10.1007/s11051-004-2601-7 Xue, 2005, A model of thermal conductivity of nanofluids with interfacial shells, Mater. Chem. Phys., 90, 298, 10.1016/j.matchemphys.2004.05.029 Xue, 2003, Model for effective thermal conductivity of nanofluids, Phys. Lett. A, 307, 313, 10.1016/S0375-9601(02)01728-0 Xie, 2005, Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture, Int. J. Heat Mass Transfer, 48, 2926, 10.1016/j.ijheatmasstransfer.2004.10.040 Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016 S.P. Jang, S.U. Choi, Free convection in a rectangular cavity (Benard convection) with nanofluids, in: Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, November 13–20, 2004. Gosselin, 2004, Combined heat transfer and power dissipation optimization of nanofluid flows, Appl. Phys. Lett., 85, 4160, 10.1063/1.1813642 Lee, 2007, Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, Int. J. Heat Mass Transfer, 50, 452, 10.1016/j.ijheatmasstransfer.2006.08.001 Zhou, 2008, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett., 92, 093123, 10.1063/1.2890431 Hwang, 2007, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transfer, 50, 4003, 10.1016/j.ijheatmasstransfer.2007.01.037 Ho, 2008, Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat Mass Transfer, 51, 4506, 10.1016/j.ijheatmasstransfer.2007.12.019 Einstein, 1906, Eine neue bestimmung der molekuldimensionen, Ann. Phys., Leipzig, 19, 289, 10.1002/andp.19063240204 Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493 Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062 Lundgren, 1972, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech., 51, 273, 10.1017/S002211207200120X Graham, 1981, On the viscosity of suspensions of solid spheres, Appl. Sci. Res., 37, 275, 10.1007/BF00951252 Simha, 1952, Treatment of the viscosity of concentrated suspensions, J. Appl. Phys., 23, 1020, 10.1063/1.1702338 Mooney, 1951, The viscosity of a concentrated suspension of spherical particles, J. Colloid Sci., 6, 162, 10.1016/0095-8522(51)90036-0 Eilers, 1941, Die viskocitat von emulsionen hochviskoser stoffe als funktion der konzentration, Kolloid-Zeitschrift, 97, 313, 10.1007/BF01503023 Saito, 1950, Concentration dependence of the viscosity of high polymer solutions, J. Phys. Soc. Jpn., 5, 4, 10.1143/JPSJ.5.4 Frankel, 1967, On the viscosity of a concentrate suspension of solid spheres, Chem. Eng. Sci., 22, 847, 10.1016/0009-2509(67)80149-0 Wang, 1999, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486 Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2 O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei, 4, 227, 10.2963/jjtp.7.227 Maiga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004 S. Maiga, C.T. Nguyen, N. Galanis, G. Roy, T. Mar’e, M. Coqueux, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, in: R.W. Lewis (Ed.), Int. J. Num. Meth. Heat Fluid Flow, vol. 16, 2006, pp. 275–292. Namburua, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 32, 397, 10.1016/j.expthermflusci.2007.05.001 Nguyen, 2007, Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon, Int. J. Heat Fluid Flow, 28, 1492, 10.1016/j.ijheatfluidflow.2007.02.004 Tseng, 2003, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng., A355, 186, 10.1016/S0921-5093(03)00063-7 Kulkarni, 2007, Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture, J. Nanosci. Nanotechnol., 7, 2318, 10.1166/jnn.2007.437 Kulkarni, 2006, Temperature dependent rheological of copper oxide nanoparticles suspension (nanofluid), J. Nanosci. Nanotechnol., 6, 1150, 10.1166/jnn.2006.187 Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004 Anoop, 2009, Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration, J. Appl. Phys., 106, 034909, 10.1063/1.3182807 Chen, 2007, Rheological behavior of ethylene glycol based titania nanofluids, Chem. Phys. Lett., 444, 333, 10.1016/j.cplett.2007.07.046 Buongiorno, 2006, Convective transport in nanofluids, ASME J. Heat Transfer, 128, 240, 10.1115/1.2150834 Palm, 2006, Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties, Appl. Therm. Eng., 26, 2209, 10.1016/j.applthermaleng.2006.03.014 Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci., 33, 706, 10.1016/j.expthermflusci.2009.01.005 Namburu, 2009, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci., 48, 290, 10.1016/j.ijthermalsci.2008.01.001 Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethyleneglycol and water mixture, Exp. Therm. Fluid Sci., 32, 397, 10.1016/j.expthermflusci.2007.05.001 Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029 Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, I&EC Fundam., 1, 182, 10.1021/i160003a005 Maxwell, 1881 D.A.G. Bruggeman, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen, Ann. Phys., Leipzig, 24 (1935) 636–679. Wasp, 1977 Jeffrey, 1973, Conduction through a random suspension of spheres, Proc. Roy. Soc. (Lond.), A335, 355, 10.1098/rspa.1973.0130 Davis, 1986, The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophys., 7, 609, 10.1007/BF00502394 Lu, 1996, Effective conductivity of composites containing aligned spherical inclusions of finite conductivity, J. Appl. Phys., 79, 6761, 10.1063/1.361498 Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420 Prasher, 2005, Thermal conductivity of nanoscale colloidal solutions (nanofluids), Phys. Rev. Lett., 94, 025901, 10.1103/PhysRevLett.94.025901 Koo, 2004, A new thermal conductivity model for nanofluids, J. Nanopart. Res., 6, 577, 10.1007/s11051-004-3170-5 Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 153107, 10.1063/1.2093936 Lee, 2010, Nanofluid convection in microtubes, ASME J. Heat Transfer, 132, 354, 10.1115/1.4001637 Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, 121, 280, 10.1115/1.2825978 Li, 2007, The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids, J. Appl. Phys., 101, 044312, 10.1063/1.2436472 Zhang, 2006, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, J. Appl. Phys., 100, 1 Timofeeva, 2007, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev. E, 76, 061203, 10.1103/PhysRevE.76.061203 Minsta, 2009, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci., 48, 363, 10.1016/j.ijthermalsci.2008.03.009 Roy, 2004, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlatt. Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011 Sundar, 2008, Experimental determination of thermal conductivity of fluid containing oxide nanoparticles, Int. J. Dynam. Fluids, 4, 57 Golubovic, 2009, Nanofluids and critical heat flux, experimental and analytical study, Appl. Therm. Eng., 29, 1281, 10.1016/j.applthermaleng.2008.05.005 Xue, 2007, Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique, Appl. Phys. Lett., 90, 184107, 10.1063/1.2736653 Kim, 2007, Experimental studies on CHF characteristics of nanofluids at pool boiling, Int. J. Multiphase Flow, 33, 691, 10.1016/j.ijmultiphaseflow.2007.02.007 Murshed, 2008, Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics, J. Phys. D: Appl. Phys., 41, 085502, 10.1088/0022-3727/41/8/085502 D.S. Zhu, S.Y. Wu, N. Wang, Surface tension and viscosity of aluminum oxide nanofluids, in: The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conference Proceedings – March 1, 2010, vol. 1207, pp. 460–464. Prakash Narayan, 2007, Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes, J. Appl. Phys., 102, 074317, 10.1063/1.2794731 You, 2003, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, 3374, 10.1063/1.1619206 Bang, 2005, Boiling heat transfer performance and phenomena of Al2O3–water nanofluids from a plain surface in a pool, Int. J. Heat Mass Transfer, 48, 2407, 10.1016/j.ijheatmasstransfer.2004.12.047 J.P. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in: Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, 2004. Wen, 2005, Experimental investigation into the pool boiling heat transfer of aqueous based (-alumina nanofluids, J. Nanopart. Res., 7, 265, 10.1007/s11051-005-3478-9 Wen, 2006, Pool boiling heat transfer of aqueous based TiO2 nanofluids, J. Enhanced Heat Transfer, 13, 231, 10.1615/JEnhHeatTransf.v13.i3.30 Liu, 2007, Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase Flow, 33, 1284, 10.1016/j.ijmultiphaseflow.2007.06.009 Kim, 2007, Experimental studies on CHF characteristics of nano-fluids at pool boiling, Int. J. Multiphase Flow, 33, 691, 10.1016/j.ijmultiphaseflow.2007.02.007 Kim, 2009, Experimental study of flow critical heat flux in alumina–water, zinc-oxide–water and diamond–water nanofluids, J. Heat Transfer, 131, 10.1115/1.3072924 Vassallo, 2004, Pool boiling heat transfer experiments in silica–water nanofluids, Int. J. Heat Mass Transfer, 47, 407, 10.1016/S0017-9310(03)00361-2 C.H. Li, B.X. Wang, X.F. Peng, Experimental investigations on boiling of nano-particle suspensions, in: 2003 Boiling Heat Transfer Conference, Jamica, USA. Kim, 2006, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett., 89, 153107, 10.1063/1.2360892 Kim, 2007, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transfer, 50, 4105, 10.1016/j.ijheatmasstransfer.2007.02.002 Sefiane, 2006, On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids, Appl. Phys. Lett., 89, 044106, 10.1063/1.2222283 Hegde, 2010, Critical heat flux enhancement in pool boiling using alumina nanofluids, Heat Transfer, Heat Transfer—Asian Res., 39, 323 Anderson, 1989, Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, ASME J. Heat Transfer, 111, 752, 10.1115/1.3250747 Mudawar, 1993, Optimization of enhanced surfaces for high flux chip cooling by pool boiling, ASME J. Electron. Packag., 115, 89, 10.1115/1.2909306 Honda, 2002, Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness, ASME J. Heat Transfer, 124, 383, 10.1115/1.1447937 Wei, 2005, Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips, Heat Mass Transfer, 41, 744, 10.1007/s00231-005-0633-x Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030