Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cấu trúc dung dịch của bromodomain thứ hai của Brd2 và sự tương tác đặc hiệu của nó với đuôi histone acetyl hóa
Tóm tắt
Brd2 là một yếu tố điều hòa phiên mã và thuộc về gia đình BET, một lớp protein chứa bromodomain ít được mô tả hơn. Brd2 chứa hai bromodomain nối tiếp (BD1 và BD2, có 46% đồng dạng trình tự) ở đầu N và một motif bảo tồn được gọi là miền ET (extra C-terminal) ở đầu C, cũng có mặt trong một số protein bromodomain khác. Hai bromodomain này được chứng minh là liên kết với histone H4 acetyl hóa và chịu trách nhiệm giữ lại ở kì giữa trên nhiễm sắc thể, có thể đây là một đặc trưng riêng biệt của protein gia đình BET. Mặc dù cấu trúc tinh thể của Brd2 BD1 đã được báo cáo, nhưng chưa có các đặc điểm cấu trúc nào được xác định cho Brd2 BD2 và sự tương tác của nó với các histone acetyl hóa. Tại đây, chúng tôi báo cáo cấu trúc dung dịch của BD2 Brd2 người được xác định bằng NMR. Mặc dù hình dạng tổng thể giống với các bromodomain từ protein khác, có thể tìm thấy những khác biệt đáng kể trong các vùng vòng xoắn, đặc biệt là trong vòng ZA, nơi có sự chèn vào hai amino acid liên quan đến một α-helix không phổ biến, gọi là π D. Helix π D tạo thành một phần của vị trí liên kết acetyl-lysine, có thể là đặc trưng cấu trúc của Brd2 BD2 và các bromodomain BET khác. Khác với Brd2 BD1, BD2 là monomer trong dung dịch. Thông qua các nghiên cứu nhiễu loạn NMR, chúng tôi đã xác định giao diện liên kết peptide H4-AcK12 trên Brd2 BD2 và chỉ ra rằng việc liên kết xảy ra với ái lực thấp (2.9 mM) và trong quá trình trao đổi nhanh. Sử dụng NMR và phân tích đột biến, chúng tôi đã xác định một số dư quan trọng cho sự tương tác Brd2 BD2-H4-AcK12 peptide và điều tra cơ chế tiềm năng cho sự nhận diện cụ thể các mã histone acetyl hóa của Brd2 BD2. Brd2 BD2 là monomer trong dung dịch và tương tác động học với H4-AcK12. Các yếu tố thứ cấp bổ sung trong vòng ZA dài có thể là một đặc điểm chung của các bromodomain BET. Xung quanh khoang liên kết ligand, năm dư aspartate tạo thành một cổ áo mang điện tích âm, phục vụ như một vị trí liên kết thứ cấp cho H4-AcK12. Chúng tôi đề xuất rằng Brd2 BD1 và BD2 có thể giữ các vai trò riêng biệt và hợp tác để điều chỉnh các chức năng của Brd2. Cơ sở cấu trúc của Brd2 BD2 sẽ giúp làm rõ thêm các chức năng của Brd2 và các thành viên BET của nó.
Từ khóa
Tài liệu tham khảo
Peterson CL, Workman JL: Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 2000, 10(2):187–192. 10.1016/S0959-437X(00)00068-X
Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL: Promoter targeting of chromatin-modifying complexes. Front Biosci 2001, 6: D1054–1064. 10.2741/Hassan
Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403(6765):41–45. 10.1038/47412
Turner BM: Histone acetylation and an epigenetic code. Bioessays 2000, 22(9):836–845. 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
Turner BM: Cellular memory and the histone code. Cell 2002, 111: 285–291. 10.1016/S0092-8674(02)01080-2
Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB: The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res 1992, 20(10):2603. 10.1093/nar/20.10.2603
Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P, Losson R: The bromodomain revisited. Trends Biochem Sci 1997, 2(5):151–153. 10.1016/S0968-0004(97)01042-6
Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA: brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 1992, 68(3):561–572. 10.1016/0092-8674(92)90191-E
Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM: Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999, 399(6735):491–496. 10.1038/20974
Ornaghi P, Ballario P, Lena AM, Gonzalez A, Filetici P: The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol 1999, 287(1):1–7. 10.1006/jmbi.1999.2577
Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE: Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol 2000, 304(3):355–370. 10.1006/jmbi.2000.4207
Jacobson RH, Ladurner AG, King DS, Tjian R: Structure and function of a human TAFII250 double bromodomain module. Science 2000, 288(5470):1422–1425. 10.1126/science.288.5470.1422
Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA: The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. Embo J 2000, 19(22):6141–6149. 10.1093/emboj/19.22.6141
Winston F, Allis CD: The bromodomain: a chromatin-targeting module? Nat Struct Biol 1999, 6(7):601–604. 10.1038/10640
Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293(5532):1074–1080. 10.1126/science.1063127
Agalioti T, Chen G, Thanos D: Deciphering the transcriptional histone acetylation code for a human gene. Cell 2002, 111(3):381–392. 10.1016/S0092-8674(02)01077-2
Loyola A, Almouzni G: Bromodomains in living cells participate in deciphering the histone code. Trends Cell Biol 2004, 14(6):279–281. 10.1016/j.tcb.2004.04.005
Florence B, Faller DV: You bet-cha: a novel family of transcriptional regulators. Front Biosci 2001, 6: D1008–1018. 10.2741/Florence
Chua P, Roeder GS: Bdf1, a yeast chromosomal protein required for sporulation. Mol Cell Biol 1995, 15(7):3685–3696.
Dey A, Ellenberg J, Farina A, Coleman AE, Maruyama T, Sciortino S, Lippincott-Schwartz J, Ozato K: A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell Biol 2000, 20(17):6537–6549. 10.1128/MCB.20.17.6537-6549.2000
Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K: Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol Cell 2004, 13(1):33–43. 10.1016/S1097-2765(03)00482-9
Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M: The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. Embo J 1996, 15(13):3394–3402.
Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP: Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 2001, 276(41):38307–38319.
Beck S, Hanson I, Kelly A, Pappin DJ, Trowsdale J: A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC. DNA Seq 1992, 2(4):203–210.
Taniguchi Y, Matsuzaka Y, Fujimoto H, Miyado K, Kohda A, Okumura K, Kimura M, Inoko H: Nucleotide sequence of the ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells. Genomics 1998, 51(1):114–123. 10.1006/geno.1998.5262
Salter-Cid L, Du Pasquier L, Flajnik M: RING3 is linked to the Xenopus major histocompatibility complex. Immunogenetics 1996, 44(5):397–399.
Takami K, Zaleska-Rutczynska Z, Figueroa F, Klein J: Linkage of LMP, TAP, and RING3 with Mhc class I rather than class II genes in the zebrafish. J Immunol 1997, 159(12):6052–6060.
Rachie NA, Seger R, Valentine MA, Ostrowski J, Bomsztyk K: Identification of an inducible 85-kDa nuclear protein kinase. J Biol Chem 1993, 268(29):22143–22149.
Denis GV, Green MR: A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev 1996, 10(3):261–271. 10.1101/gad.10.3.261
Denis GV, Vaziri C, Guo N, Faller DV: RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. Cell Growth Differ 2000, 11(8):417–424.
Jiang YW, Veschambre P, Erdjument-Bromage H, Tempst P, Conaway JW, Conaway RC, Kornberg RD: Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc Natl Acad Sci USA 1998, 95(15):8538–8543. 10.1073/pnas.95.15.8538
Sinha A, Faller DV, Denis GV: Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J 2005, 387(Pt 1):257–269.
Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE: Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res 2006, 5(3):502–511. 10.1021/pr050430u
Peng J, Dong W, Chen L, Zou T, Qi Y, Liu Y: Brd2 is a TBP-associated protein and recruits TBP into E2F-1 transcriptional complex in response to serum stimulation. Mol Cell Biochem 2006.
Crowley TE, Kaine EM, Yoshida M, Nandi A, Wolgemuth DJ: Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol II mediator of a mammalian double-bromodomain protein. Mol Endocrinol 2002, 16(8):1727–1737. 10.1210/me.2001-0353
Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV: E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 2004, 103(4):1475–1484. 10.1182/blood-2003-06-2116
Platt GM, Simpson GR, Mittnacht S, Schulz TF: Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. J Virol 1999, 73(12):9789–9795.
You J, Croyle JL, Nishimura A, Ozato K, Howley PM: Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 2004, 117(3):349–360. 10.1016/S0092-8674(04)00402-7
Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q: Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005, 19(4):535–545. 10.1016/j.molcel.2005.06.029
Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K: The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005, 19(4):523–534. 10.1016/j.molcel.2005.06.027
Nakamura Y, Umehara T, Nakano K, Jang MK, Shirouzu M, Morita S, Uda-Tochio H, Hamana H, Terada T, Adachi N, Matsumoto T, Tanaka A, Horikoshi M, Ozato K, Padmanabhan B, Yokoyama S: Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone h4. J Biol Chem 2007, 282(6):4193–4201. 10.1074/jbc.M605971200
Aurora R, Rose GD: Helix capping. Protein Sci 1998, 7(1):21–38.
Ottiger M, Zerbe O, Guntert P, Wuthrich K: The NMR solution conformation of unligated human cyclophilin A. J Mol Biol 1997, 272(1):64–81. 10.1006/jmbi.1997.1220
Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM: Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 2002, 9(3):575–586. 10.1016/S1097-2765(02)00483-5
Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand , Sanchez R, Zeleznik-Le NJ, Ronai Z, Zhou MM: Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 2004, 13(2):251–263. 10.1016/S1097-2765(03)00528-8
Singh M, Popowicz GM, Krajewski M, Holak TA: Structural Ramification for Acetyl-Lysine Recognition by the Bromodomain of Human BRG1 Protein, a Central ATPase of the SWI/SNF Remodeling Complex. Chembiochem 2007, 8(11):1308–1316. 10.1002/cbic.200600562
Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X, Wu J, Shi Y: Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 2007, 46(8):2100–2110. 10.1021/bi0611208
Lian LY, Barsukov IL, Sutcliffe MJ, Sze KH, Roberts GC: Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol 1994, 239: 657–700.