Does stream water chemistry reflect watershedcharacteristics?

Springer Science and Business Media LLC - Tập 185 - Trang 5683-5701 - 2012
Tomáš Chuman1,2,3, Jakub Hruška1,2, Filip Oulehle1,2, Pavla Gürtlerová4, Vladimír Majer1
1Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague 1, Czech Republic
2Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno, Czech Republic
3Faculty of Science, Department of Physical Geography and Geoecology, Charles University in Prague, Prague 2, Czech Republic
4Department of Information Systems, Czech Geological Survey, Prague 1, Czech Republic

Tóm tắt

In this study, we investigated the relationships between stream water chemistry and watershed characteristics (topography—mean altitude and slope; climate—mean annual temperature and precipitation; geology—geochemical reactivity; land cover; inhabitation—population density, road density and number of municipalities). We analyzed the concentrations of the major anions (Cl, F, NO3, SO4, SiO2), cations (Ca, Mg, Na, K, Mn, Fe, Al), trace elements (Li, Sr, Cu), ABS245, TDP (total dissolved phosphorus), pH, and conductivity at 3,220 diverse watersheds covering a wide variety of watershed characteristics in the Czech Republic. We used marginal and partial multivariate analyses to reveal the most important variables. The partial analysis showed that only 14 % of the variance could be assigned to a specific factor and that 41 % of the variance is shared among the factors, which indicated complex interactions between the watershed characteristics.

Tài liệu tham khảo

Adamová, M. (1991). Geochemical reactivity of rocks—important environmental factor (Geochemická reaktivita hornin—významný faktor životního prostředí. Geologický průzkum, 5, 139–140 (in Czech). Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., Anderson, M., Johnson, J., & Tate, K. W. (2005). Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology, 313, 234–247. Allan, J. D. (2004). Landscapes and river scapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284. Arheimer, B., & Lindél, R. (2000). Nitrogen and phosphorus concentrations from agricultural catchments—influence of spatial and temporal variables. Journal of Hydrology, 227, 140–159. Bengraïne, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials, B100, 179–195. Cameron, E. M. (1996). Hydrogeochemistry of the Fraser River, British Columbia: seasonal variation in major and minor components. Journal of Hydrology, 182, 209–225. Chloupek, O., Hrstkova, P., & Schweigert, P. (2004). Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilization over 75 years in the Czech republic in comparison to some European countries. Field Crops Research, 85, 167–190. Close, M. E., & Davies-Colley, R. J. (1990). Baseflow water chemistry in New Zealand rivers. 2. Influence of environmental factors. New Zealand Journal of Marine and Freshwater Research, 24, 343–356. Dahl, I., Hagebo, E. (2011). Intercomparison 1125 (pH, Conductivity, Alkalinity, NO3-N, Cl, SO4, Ca, Mg, Na, K, TOC, Ale, Fe, Mn, Cd, Pb, Cu, Ni and Zn. International cooperative programm on assesment and monitoring of acidifcation of rivers and lakes. Report No. 107/2011. Norwegian Institute for Water Research, Oslo, Norway, 75 p. Dow, C. L., Arscott, D. B., & Newbold, J. D. (2006). Relating major ions and nutrients to watershed conditions across a mixed-use, water-supply watersheds. Journal of the North American Benthological Society, 25(4), 887–911. Drever, J. I. (1988). The geochemistry of natural waters (2nd ed., p. 437). Englewood Cliffs, New Jersey: Prentice Hall. Drever, J. I., & Zobrist, J. (1992). Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochemica et Cosmochimica Acta, 56, 3209–3216. Erlandsson, M., Buffam, I., Fölster, J., Laudon, H., Temnerud, J., Weyhenmeyer, G. A., et al. (2008). Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Global Change Biology, 14, 1191–1198. ESRI. (2009). ArcGIS Desktop: Release 9.3. Redlands, CA: Environmental Systems Research Institute Gaillardet, J., Viers, J., & Dupré, B. (2005). Trace elements in river waters. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils vol. 5 treatise on geochemistry (eds. H.D. Hollan and K.K. Turekian) (pp. 225–272). Oxford: Elsevier-Pergamon. Gürtlerová, P., Dušek, P., Fikr, Š. (1997). Litogeochemical database of the Czech Geological Survey. Czech Geological Survey Report 10167, Prague (in Czech) Herlihy, A. T., Stoddard, J. L., & Johnson, C. B. (1998). The Relationship Between Stream Chemistry and Watershed Land Cover Data in the Mid-Atlantic Region, U.S. Water, Air, and Soil Pollution, 105(1–2), 377–386. Holloway, J. M., Dahlgren, R. A., Hansen, B., & Casey, W. H. (1998). Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature, 395, 785–788. Hruska, J., & Kram, P. (2003). Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic). Hydrology and Earth System Sciences, 7(4), 525–539. Humborg, C., Smedberg, E., Medina, M. R., & Morth, C. M. (2008). Changes in dissolved silicate loads to the Baltic Sea—the effects of lakes and reservoirs. Journal of Marine Systems, 73(3–4), 223–235. Hunsaker, C. T., & Levine, D. A. (1995). Hierarchical approaches to the study of water quality in rivers. BioScience, 45(3), 193–203. Johnson, L. B., Richards, C., Host, G. E., & Arthur, J. W. (1997). Landscape influence on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37, 193–208. Jongman, R. H. G., ter Braak, C. J. F., & van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. New York: Cambridge University Press. Kalkhoff, S. J. (1993). Using a geographic information system to determine relation between stream quality and geology in the Roberts Creek watershed, Clayton County, IOWA. Water Resources Bulletin, 29(6), 989–996. King, R. S., Baker, M. E., Whigham, D. E., Weller, D. E., Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15, 137–153. Kopáček, J., & Hejzlar, J. (1993). Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental and Analytical Chemistry, 53, 173–183. Kram, P. (2010). Influence of lithology on streamwater chemistry. Geochimica et Cosmochimica Acta, 74((12), Supplement 1), A537–A537. Kram, P., & Hruska, J. (1994). Influence of bedrock geology on elemental fluxes in two forested catchments affected by high acidic deposition. Applied Hydrogeology, 2(2), 50–58. Kram, P., & Hruska, J. (2010). Streamwater chemistry in three contrasting monolithologic watersheds. In P. Birkle & I. S. Torres-Alvarado (Eds.), Water-rock interaction (pp. 257–260). London: CRC Press/Balkema, Taylor & Francis Group. Kvítek, T., Žlábek, P., Bystřický, V., Fučík, P., Lexa, M., Gergel, J., et al. (2009). Changes of nitrate concentrations in surface waters influenced by land use in the crystalline complex of the Czech Republic. Physics and Chemistry of the Earth, 34(8–9), 541–551. Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, UK. Lindell, L., Åström, M., & Öberg, T. (2010). Land-use change versus natural controls on stream chemistry in the Subandean Amazon, Peru. Applied Geochemistry, 25, 485–495. Liu, Z. J., Weller, D. E., Correll, D. L., & Jordan, T. E. (2000). Effects of land cover and geology on stream chemistry in watersheds of Chesapeake Bay. Journal of the American Water Resources Association, 36(6), 1349–1365. Ludwig, W., Probst, J. L., & Kempe, S. (1996). Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10(1), 23–41. Meybeck, M. (2005). Global occurence of major elements in rivers. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils vol. 5 treatise on geochemistry (eds. H.D. Hollan and K.K. Turekian) (pp. 207–223). Oxford: Elsevier-Pergamon. Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540. Navrátil, T., Vach, M., Norton, S. A., Skrivan, P., Hruška, J., & Maggini, L. (2003). The response of small stream in the Lesni potok forested catchment, central Czech Republic, to a short-term in-stream acidification. Hydrology and Earth System Sciences, 7(3), 411–422. Nisbet, T. R., Fowler, D., & Smith, R. I. (1995). An investigation of the impact of affroestation on stream-water chemistry in the Loch Dee catchement, sw Scotland. Environmental Pollution, 90(1), 111–120. Osborne, L. L., & Wiley, M. J. (1988). Empirical relationships between land-use cover and stream water-quality. Journal of Environmental Management, 26(1), 9–27. Oulehle, F., & Hruška, J. (2009). Rising trends of dissolved organic matter in drinking-water reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic. Environmental Pollution, 157(12), 3433–3439. Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Krám, P., Hruška, J., Navrátil, T., et al. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11, 410–425. Reimann, C., Finne, T. E., Nordgulen, Ø., Sæther, O. M., Arnoldussen, A., & Banks, D. (2009). The influence of geology and land-use on inorganic stream water quality in the Oslo region, Norway. Applied Geochemistry, 24(10), 1862–1874. Rhodes, A. L., Newton, R. M., & Puffal, A. (2001). Influence of land use on water quality of a diverse New England watershed. Environmental Science and Technology, 35, 3640–3645. Stålnacke, P., Vandsemb, S. M., Vassiljev, A., Grimvall, A., & Jolankai, G. (2004). Changes in nutrient levels in some Eastern European rivers in response to large-scale changes in agriculture. Water Science and Technology, 49(3), 29–36. ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Ithaca, NY: Microcomputer Power. Tolasz, R., Míková, T., Valeriánová, A., & Voženílek, V. (Eds.). (2007). Climate atlas of Czechia. Prague: Czech Hydrometeorological Institute. Veselý, J., & Majer, V. (1996). The effect of pH and atmospheric deposition on concentration of trace elements in acidified freshwaters: a statistical approach. Water, Air, and Soil Pollution, 88, 227–246. Veselý, J., & Majer, V. (1998). Hydrogeochemical mapping of Czech freshwaters. Věstník Českého geologického ústavu, 73(3), 183–191. Williard, K. W. J., Dewalle, D. R., & Edwards, P. J. (2005). Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-appalachian forested watersheds. Water, Air, and Soil Pollution, 160, 55–76. Xie, X. D., Norra, S., Berner, Z., & Stüben, D. (2005). A GIS-supported multivariate statistical analysis of relationships among stream water chemistry, geology and land use in Baden-Wurttemberg, Germany. Water, Air, and Soil Pollution, 167(1–4), 39–57.