Online algorithm configuration for differential evolution algorithm
Tóm tắt
The performance of evolutionary algorithms (EAs) is strongly affected by their configurations. Thus, algorithm configuration (AC) problem, that is, to properly set algorithm’s configuration, including the operators and parameter values for maximizing the algorithm’s performance on given problem(s) is an essential and challenging task in the design and application of EAs. In this paper, an online algorithm configuration (OAC) approach is proposed for differential evolution (DE) algorithm to adapt its configuration in a data-driven way. In our proposed OAC, the multi-armed bandit algorithm is adopted to select trial vector generation strategies for DE, and the kernel density estimation method is used to adapt the associated control parameters during the evolutionary search process. The performance of DE algorithm using the proposed OAC (OAC-DE) is evaluated on a benchmark set of 30 bound-constrained numerical optimization problems and compared with several adaptive DE variants. Besides, the influence of OAC’s hyper-parameter on its performance is analyzed. The comparison results show OAC-DE achieves better average performance than the compared algorithms, which validates the effectiveness of the proposed OAC. The sensitivity analysis indicates that the hyper-parameter of OAC has little impact on OAC-DE’s performance.
Tài liệu tham khảo
Aleti A, Moser I (2016) A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv 49(3)
Ansótegui C, Sellmann M, Tierney K (2009) A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent IP (ed) Principles and practice of constraint programming - CP 2009. Springer, Berlin, pp 142–157
Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2-3):235–256
Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Tech rep. Nanyang Technological University, Singapore
Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the second international conference on genetic algorithms on genetic algorithms and their application, L Erlbaum Associates Inc., USA. 14–21
Balaprakash P, Birattari M, Stützle T (2007) Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-beielstein T, blesa aguilera MJ, Blum C, Naujoks B, Roli A, Rudolph G, Sampels M (eds) Hybrid metaheuristics. Springer, Berlin, pp 108–122
Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc San Francisco, CA, USA, GECCO’02. 11–18
Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657
Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31
Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution–an updated survey. Swarm Evol Comput 27:1–30
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141
Fan Q, Wang W, Yan X (2019) Differential evolution algorithm with strategy adaptation and knowledge-based control parameters. Artif Intell Rev 51(2):219–253
Gong W, Fialho Á, Cai Z, Li H (2011) Adaptive strategy selection in differential evolution for numerical optimization: An empirical study. Inf Sci 181(24):5364–5386
Gramacki A (2018) Kernel density estimation. In: Kacprzyk J (ed) Nonparametric kernel density estimation and its computational aspects. Springer International Publishing, Cham, pp 25–62
Hoos HH (2012) Automated algorithm configuration and parameter tuning. In: Hamadi Y, Monfroy E, Saubion F (eds) Autonomous Search. Springer, pp 37–71
Huang C, Yuan B, Li Y, Yao X (2019) Automatic parameter tuning using bayesian optimization method. IEEE Congr. Evol. Comput. Wellington, New Zealand. 2090–2097
Huang C, Li Y, Yao X (2020) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput 24(2):201–216
Hutter F, Hoos HH, Leytonbrown K, Stutzle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36(1):267–306
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Springer, Heidelberg, pp 507–523
Iorio AW, Li X (2005) Solving rotated multi-objective optimization problems using differential evolution. In: Webb GI, Yu X (eds) AI: 2004 advances in artificial intelligence. Springer, Berlin, pp 861–872
Jerebic J, Mernik M, Liu SH, Ravber M, Baketarić M, Mernik L, Črepinšek M (2021) A novel direct measure of exploration and exploitation based on attraction basins. Expert Syst Appl 114353:167
Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans Evol Comput 19(2):167–187
Koulouriotis D, Xanthopoulos A (2008) Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems. Appl Math Comput 196(2):913–922
Liu SH, Mernik M, Hrnčič D, Črepinšek M (2013) A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model. Appl Soft Comput 13(9):3792–3805
Lu X, Tang K, Sendhoff B, Yao X (2014) A new self-adaptation scheme for differential evolution. Neurocomputing 146:2–16
Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696
Mallipeddi R, Wu G, Lee M, Suganthan PN (2014) Gaussian adaptation based parameter adaptation for differential evolution. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1760–1767
Montgomery J, Chen S (2010) An analysis of the operation of differential evolution at high and low crossover rates. IEEE Congr Evol Comput Barcelona, Spain. 1–8
Müller C L, If Sbalzarini (2010) Gaussian adaptation revisited – an entropic view on covariance matrix adaptation. In: Di chio C, Cagnoni S, Cotta C, Ebner M, Ekárt A, Esparcia-Alcazar AI, Goh CK, Merelo JJ, Neri F, Preuß M, Togelius J, Yannakakis GN (eds) Applications of evolutionary computation. Springer, Berlin, pp 432–441
Nannen V, Eiben A (2006) A method for parameter calibration and relevance estimation in evolutionary algorithms. In: Proceedings of the 8th annual conference on genetic and evolutionary computation, association for computing machinery, New York, NY, USA, GECCO ’06. p 183–190
Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimentalanalysis. Artif Intell Rev 33(1-2):61–106
Opara K, Arabas J (2018) Comparison of mutation strategies in differential evolution – a probabilistic perspective. Swarm Evol Comput 39:53–69
Opara KR, Arabas J (2019) Differential evolution: a survey of theoretical analyses. Swarm Evol Comput 44:546–558
Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33 (3):1065–1076
Price KV, Storn RM, Lampinen JA (2005) The differential evolution algorithm. In: Rozenberg G, Bäck T, Eiben A, Kok J, Spaink H (eds). Springer, Berlin, pp 37–134
Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: IEEE Congr. Evol. Comput., Edinburgh, Scotland, UK, vol 2, pp 1785–1791 vol. 2
Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417
Santucci V, Milani A (2011) Covariance-based parameters adaptation in differential evolution. In: Proceedings of the 13th Annual conference companion on genetic and evolutionary computation, association for computing machinery, New York, NY, USA, GECCO ’11. 687–690
Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: a review of bayesian optimization. Proc IEEE 104(1):148–175
Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359
Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT Press, Cambridge
Swami A, jain R (2013) Scikit-learn: Machine learning in python. J Mach Learn Res 12 (10):2825–2830
Veček N, Mernik M, Filipič B, Črepinšek M (2016) Parameter tuning with chess rating system (CRS-tuning) for meta-heuristic algorithms. Inf Sci 372:446–469
Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66
Yang Z, Tang K, Yao X (2008a) Self-adaptive differential evolution with neighborhood search. IEEE Congr Evol Comput. Hong Kong, China, 1110–1116
Yang Z, Yao X, He J (2008b) Making a difference to differential evolution. In: Siarry P, Michalewicz Z (eds) Advances in metaheuristics for hard optimization. springer, Berlin, pp 397– 414
Yang Z, Tang K, Yao X (2011) Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Comput 15(11):2141–2155
Yu W, Shen M, Chen W, Zhan Z, Gong Y, Lin Y, Liu O, Zhang J (2014) Differential evolution with two-level parameter adaptation. IEEE Trans Cybern 44(7):1080–1099
Zhang J, Sanderson AC (2009) JADE: Adaptive Differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958