MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting

Computerized Medical Imaging and Graphics - Tập 69 - Trang 43-51 - 2018
Jose V. Manjón1, Pierrick Coupé2,3, Parnesh Raniga4, Ying Xia4, Patricia Desmond5,6, Jurgen Fripp4, Olivier Salvado4
1Instituto de Aplicaciones de Las Tecnologías de La Información y de Las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain
2Univ. Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
3CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
4Australian e-Health Research Centre, CSIRO, Brisbane, QLD, 4029, Australia
5Department of Radiology, University of Melbourne, Parkville, VIC, 3010, Australia
6Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia

Tài liệu tham khảo

Admiraal-Behloul, 2005, Fully automatic segmentation of white matter hyperintensities in MR images of the elderly, NeuroImage, 28, 607, 10.1016/j.neuroimage.2005.06.061 Avants, 2009 Ashburner, 2005, Unified segmentation, Neuroimage, 26, 839, 10.1016/j.neuroimage.2005.02.018 Breiman, 1994 Brosch, 2015, 3 Caligiuri, 2015, Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review, Neuroinformatics, 13, 261, 10.1007/s12021-015-9260-y Debette, 2010, The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis, Br. Med. J., 341, c3666, 10.1136/bmj.c3666 Dolz, 2017 Dyrby, 2008, Segmentation of age-related white matter changes in a clinical multicenter study, NeuroImage, 41, 335, 10.1016/j.neuroimage.2008.02.024 Ellis, 2009, The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease, Int Psychogeriatr. 2009, 1 Filippi, 2011, MR imaging of multiple sclerosis, Radiology, 259, 659, 10.1148/radiol.11101362 Ghafoorian, 2016, Transfer learning for domain adaptation in MRI: application in brain lesion segmentation, Med. Phys., 43, 6246, 10.1118/1.4966029 Geremia, 2010, Spatial decision forests for MS lesion segmentation in multi-channel MR images, vol. 6362, 111 Guizard, 2015, Rotation-invariant multi-contrast non-local means for MS lesion segmentation, Neuroimage Clin., 8, 376, 10.1016/j.nicl.2015.05.001 Ithapu, 2014, Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies, Hum. Brain Mapp., 35, 4219, 10.1002/hbm.22472 Jack, 2001, FLAIR histogram segmentation for meas-urement of leukoaraiosis volume, J. Magn. Reson. Imaging, 14, 668, 10.1002/jmri.10011 Jesson, 2015 Kamnitsas, 2017 Kuller, 2004, White matter hyperintensity on cranial magnetic resonance imaging a predictor of stroke, Stroke, 35, 1821, 10.1161/01.STR.0000132193.35955.69 Kuo, 2004, Cerebral White matter changes and geriatric syndromes: is there a link?, J. Gerontol. Med. Sci., 59, 818, 10.1093/gerona/59.8.M818 Lao, 2008, Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine, Acad. Radiol., 15, 300, 10.1016/j.acra.2007.10.012 Lee, 2015, Impact of white matter lesions on depression in the patients with Alzheimer’s disease, Psychiatry Investig., 12, 516, 10.4306/pi.2015.12.4.516 Manjón, 2010, Adaptive non-local means denoising of MR images with spatially varying noise levels, J. Magn. Reson. Imaging, 31, 192, 10.1002/jmri.22003 Manjón, 2016, 92 Mäntylä, 1997, Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort, Stroke, 28, 1614, 10.1161/01.STR.28.8.1614 Neema, 2010, Normal findings on brain FLAIR MRI scans at 3T, AJNR Am. J. Neuroradiol., 30, 911, 10.3174/ajnr.A1514 Opitz, 1999, Popular ensemble methods: an empirical study, J. Artif. Intell. Res., 11, 169, 10.1613/jair.614 Raniga, 2011, Local intensity model: an outlier detection framework with applications to white matter hyperintensity segmentation Schapire, 1990, The strength of weak learnability, Mach. Learn., 5, 10.1007/BF00116037 Scheltens, 1998, White matter changes on CT and MRI: an overview of visual rating scales, Eur. Neurol., 39, 80, 10.1159/000007921 Schmidt, 2004, White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease, Neurology, 63, 10.1212/01.WNL.0000132635.75819.E5 Schmidt, 2012, An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis, Neuroimage, 59, 3774, 10.1016/j.neuroimage.2011.11.032 Souplet, 2008 Steenwijk, 2013, Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs), Neuroimage Clin., 3, 462, 10.1016/j.nicl.2013.10.003 Styner, 2008 Suk, 2017, Deep ensemble learning of sparse regression models for brain disease diagnosis, Med. Image Anal., 37, 101, 10.1016/j.media.2017.01.008 Udupa, 1997, Multiple sclerosis lesion quantification using fuzzy-connectedness principles, IEEE Trans. Med. Imaging, 16, 598, 10.1109/42.640750 Valverde, 2017, Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach, NeuroImage, 155, 159, 10.1016/j.neuroimage.2017.04.034 Wardlaw, 2013, STandards for ReportIng vascular changes on neuroimaging (STRIVE v1): neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration, Lancet Neurol., 12, 822, 10.1016/S1474-4422(13)70124-8 Wang, 2011, A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmetnation, NeuroImage, 55, 968, 10.1016/j.neuroimage.2011.01.006 Weiss, 2013, A. Multiple sclerosis lesion segmentation using dic-tionary learning and sparse coding, Med. Image Comput. Comput. Assist. Interv., 16, 735 Wong, 2002, Cerebral white matter lesions, retinopathy, and incident clinical stroke, JAMA, 288, 67, 10.1001/jama.288.1.67