Curvature Attribute from Surface-Restoration as Predictor Variable in Kupferschiefer Copper Potentials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agterberg, F., Bonham-Carter, G., Cheng, Q., & Wright, D. (1993). Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Proceedings of the Computers in Geology-25 Years of Progress (pp. 13–32). Oxford: Oxford University Press Inc.
Bechtel, A., Elliott, W. C., Wampler, J. M., & Oszczepalski, S. (1999). Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein basin; implications for the age of Kupferschiefer mineralization. Economic Geology, 94, 261–272.
Bechtel, A., Gratzer, R., Püttmann, W., & Oszczepalski, S. (2001). Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin–Sieroszowice mining district, SW Poland). Organic Geochemistry, 32(3), 377–395.
Blundell, D. J., Karnkowski, P. H., Alderton, D. H. M., Oszczepalski, S., & Kucha, H. (2003). Copper mineralization of the Polish Kupferschiefer: A proposed basement fault-fracture system of fluid flow. Economic Geology, 98(7), 1487–1495.
Bond, C., Gibbs, A., Shipton, Z., & Jones, S. (2007). What do you think this is? “Conceptual uncertainty” in geoscience interpretation. GSA Today, 17(11), 4–10.
Botella, A., Lévy, B., & Caumon, G. (2013). Indirect hex-dominant mesh generation using a matching tetrahedra method. In Proceedings of the 33rd Gocad Meeting. Nancy: ASGA.
Brown, A. C. (2011). Adding geochemical rigor to the general basin-scale genetic model for sediment-hosted stratiform copper mineralization. In Proceedings of the 11th SGA Biennial Meeting. Antofagasta: SGA.
Caumon, G. (2010). Towards stochastic time-varying geological modeling. Mathematical Geosciences, 42(5), 555–569.
Caumon, G., Collon-Drouaillet, P., Carlier, Le, de Veslud, C., Viseur, S., & Sausse, J. (2009). Surface-based 3D modeling of geological structures. Mathematical Geosciences, 41, 927–945.
Chamberlin, R. T. (1910). The Appalachian folds of central Pennsylvania. The Journal of Geology, 18(3), 228–251.
Cheng, Q. (2008). Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. In Progress in Geomathematics, (pp. 195–225). Berlin: Springer.
Cherpeau, N., Caumon, G., & Lévy, B. (2010). Stochastic simulations of fault networks in 3D structural modeling. Comptes Rendus Geoscience, 342(9), 687–694.
Dadlez, R., Marek, S., & Pokorski, J. (2000). Geological map of Poland without Cainozoic deposits. Warszawa: Państwowy Instytut Geologiczny.
de Araújo, C. C., & Macedo, A. B. (2002). Multicriteria geologic data analysis for mineral favorability mapping: Application to a metal sulphide mineralized area, Ribeira valley metallogenic province Brazil. Natural Resources Research, 11, 29–43.
de Quadros, T., Koppe, J., Strieder, A., & Costa, J. (2006). Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research, 15(1), 49–65.
De Santi, M., Campos, J., & Martha, L. (2002). A finite element approach for geological section reconstruction. In Proceedings of the 22th Gocad Meeting. Nancy: ASGA
Duffy, O. B., Gawthorpe, R. L., Docherty, M., & Brocklehurst, S. H. (2013). Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben North Sea. Basin Research, 25(3), 310–330.
Durand-Riard, P., Caumon, G., & Muron, P. (2010). Balanced restoration of geological volumes with relaxed meshing constraints. Computers & Geosciences, 36, 441–452.
Durand-Riard, P., Guzofski, C. A., Caumon, G., & Titeux, M. O. (2013). Handling natural complexity in 3D geomechanical restoration, with application to the recent evolution of the outer fold-and-thrust belt, deepwater Niger Delta. AAPG Bulletin, 97(1), 87–102.
Finch, E., Hardy, S., & Gawthorpe, R. (2004). Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4), 467–488.
Forster, C., & Smith, L. (1989). The influence of groundwater flow on thermal regimes in mountainous terrain: A model study. Journal of Geophysical Research: Solid Earth (1978–2012), 94(B7), 9439–9451.
Gao, D. (2013). Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications. Geophysics, 78(2), O21–O31.
Gouin, J. (2008). Mode de genése et valorisation des minerais de type black shales: cas du Kupferschiefer (Pologne) et des schistes noirs de Talvivaara (Finlande). Ph.D. thesis report., Université d’Orléans, Orléans.
Gratier, J. P., & Guillier, B. (1993). Compatibility constraints on folded and faulted strata and calculation of total displacement using computational restoration (UNFOLD program). Journal of structural geology, 15(3), 391–402.
Groshong, R. (2006). 3-D structural geology. A practical guide to quantitative surface and subsurface map interpretation (2nd ed.). Berlin Heidelberg: Springer-Verlag.
Guzofski, C., Mueller, J., Shaw, J., Muron, P., Medwedeff, D., Bilotti, F., et al. (2009). Insights into the mechanisms of fault-related folding provided by volumetric structural restorations using spatially varying mechanical constraints. AAPG Bulletin, 93, 479–502.
Hitzman, M. W., Selley, D., & Bull, S. (2010). Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Economic Geology, 105(3), 627–639.
Hosmer, D. W, Jr, & Lemeshow, S. (2004). Applied logistic regression. London: John Wiley.
Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled SRTM for the globe version 4. Retrieved from the CGIAR-SXI SRTM 90m database http://srtm.csicgiar.org .
Jowett, E. C. (1986). Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during triassic rifting. Economic Geology, 81(8), 1823–1837.
Jowett, E. C., Pearce, G. W., & Rydzewski, A. (1987). A mid-Triassic paleomagnetic age of the Kupferschiefer mineralization in Poland, based on a revised apparent polar wander path for Europe and Russia. Journal of Geophysical Research, 92(B1), 581–598.
Kane, K. E., Jackson, C. A. L., & Larsen, E. (2010). Normal fault growth and fault-related folding in a salt-influenced rift basin: South Viking Graben, offshore Norway. Journal of Structural Geology, 32(4), 490–506.
Karnkowski, P. H. (1999). Origin and evolution of the polish Rotliegend basin. Polish Geological Institute Special Papers, 3, 1–93.
Kerrich, R. (1993). Perspectives on genetic models for lode gold deposits. Mineralium Deposita, 28(6), 362–365.
KGHM Polska Miedź, S. A. (2012). Report on the mining assets of KGHM Polska Miedź S.A. located within the Legnica–Głogów Copper Belt Area. Report prepared by an internal team of KGHM Polska Miedź S. A. 50, KGHM Polska Miedź S.A., Poland.
Krzywiec, P. (2006). Triassic–Jurassic evolution of the pomeranian segment of the Mid-Polish Trough: Basement tectonics and subsidence patterns. Geological Quarterly, 50, 139–150.
Lecour, M., Cognot, R., Duvinage, I., Thore, P., & Dulac, J. C. (2001). Modelling of stochastic faults and fault networks in a structural uncertainty study. Petroleum Geoscience, 7(S), S31–S42.
Lefebvre, J. (1989). Les gisements stratiformes en roche sédimentaire d’Europe centrale (Kupferschiefer) et de la Ceinture Cuprifère du Zaïre et de Zambie. Annales de la Societé Géologique de Belgique, 112(1), 121–135.
Lisle, R. (1994). Detection of zones of abnormal strains in structures using Gaussian curvature analysis. AAPG Bulletin, 78(12), 1811–1819.
Maerten, L., & Maerten, F. (2006). Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications. AAPG Bulletin, 90(8), 1201–1226.
Mallet, J. L. (2002). Geomodeling. Oxford: Oxford University Press.
Mazur, S., Scheck-Wenderoth, M., & Krzywiec, P. (2005). Different modes of the Late Cretaceous $$-$$ - Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences, 94(5), 782–798.
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz, K., Górecka-Nowak, A., et al. (2010). Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland. International Journal of Earth Sciences, 99(1), 47–64.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (monographs on statistics and applied probability 37). London: Chapman Hall.
Mejia, P., & Royer, J. J. (2012). Explicit surface restoring-decompacting procedure to estimate the hydraulic fracturing: Case of the Kupferschiefer in the Lubin region, Poland. In Proceedings of the 32nd Gocad Meeting. Nancy: ASGA.
Michalik, M. (1997). Mineral deposits, research and exploration. Chlorine containing illites, copper chlorides and other chloride bearing minerals in the fore-sudetic copper deposit (Poland) (pp. 543–546). Rotterdam: Balkema.
Moretti, I. (2008). Working in complex areas: New restoration workflow based on quality control, 2D and 3D restorations. Marine and Petroleum Geology, 25(3), 205–218.
Moretti, I., Lepage, F., & Guiton, M. (2006). KINE3D: a new 3D restoration method based on a mixed approach linking geometry and geomechanics. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, 61(2), 277–289.
Moretti, I., Delos, V., Letouzey, J., Otero, A., & Calvo, J. C. (2007). The use of surface restoration in foothills exploration: Theory and application to the sub-Andean zone of Bolivia. In O. Lacombe, F. Roure, J. Lavé, & J. Vergés (Eds.), Thrust belts and foreland basins, frontiers in earth sciences (pp. 149–162). Berlin Heidelberg: Springer.
Muchez, P., Heijlen, W., Banks, D., Blundell, D., Boni, M., & Grandia, F. (2005). 7: Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geology Reviews, 27(1), 241–267.
Narkiewicz, M., Resak, M., Littke, R., & Marynowski, L. (2010). New constraints on the middle palaeozoic to cenozoic burial and thermal history of the holy cross mts. Central Poland: Results from numerical modelling. Geologica Acta, 8, 189–205.
Oszczepalski, S. (1999). Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineralium Deposita, 34, 599–613.
Oszczepalski, S., & Speczik, S. (2011). Prospectivity analysis of the polish Kupferschiefer: New insight. In Proceedings of the 11th SGA Biennial Meeting. Antofagasta: SGA.
Oszczepalski, S., Rydzewski, A., & Geologiczny, I. (1997). Metallogenic atlas of Zechstein copper-bearing series in Poland. Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej.
PARADIGM. (2012). Training guide: modeling reservoir architecture. SKUA—-Paradigm. PARADIGM.
Pawlak, W., Aniol-Kwiatkowska, J., Pawlak, J., Nowak-Ferdhus, E., Migoń, P., & Malicka, A. et al. (2008). Atlas Ślaska Dolnego i Opolskiego. Uniwersytet Wrocławski. Pracownia Atlasu Dolnego Ślaska.
Pieczonka, J., Piestrzyński, A., Mucha, J., Głuszek, A., Kotarba, M., & Wiecław, D. (2008). The red-bed-type precious metal deposit in the Sieroszowice–Polkowice copper mining district, SW Poland. Annales Societatis Geologorum Poloniae, 78, 151–280.
Piestrzyński, A., Pieczonka, J., & Głuszek, A. (2002). Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineralium Deposita, 37(5), 512–528.
Rentzsch, J., & Franzke, H. (1997). Regional tectonic control of the Kupferschiefer mineralization in Central Europe. Zeitschrift für Geologische Wissenschaften, 25, 141–150.
Rentzsch, J., Franzke, H., & Friedrich, G. (1997). Die laterale Verbreitung der Erzmineralassoziationen im deutschen Kupferschiefer. Zeitschrift für Geologische Wissenschaften, 25, 121–140.
Resak, M., Narkiewicz, M., & Littke, R. (2008). New basin modelling results from the Polish part of the Central European Basin system: Implications for the late cretaceous—early paleogene structural inversion. International Journal of Earth Sciences, 97(5), 955–972.
Roberts, A. (2001). Curvature attributes and their application to 3D interpreted horizons. First Break, 19(2), 85–100.
Rouby, D. (1994). Restauration en carte des domaines faillés en extension. Méthode et applications. PhD thesis, Université Rennes 1.
Schaeben, H. (2012). Comparison of mathematical methods of potential modeling. Mathematical Geosciences, 44, 101–129.
Schaeben, H. (2013). Bits of mathematics of potential modelling. In Proceedings of the 12th Biennial SGA Meeting on Mineral Deposits Research for a High-Tech World, (vol. 2, pp. 489–491). Uppsala: SGA.
Schaeben, H. (2014). Potential modeling: Conditional independence matters. GEM—International Journal on Geomathematics, 5(1), 99–116.
Schaeben, H., & Schmidt, S. (2013). Theoretical and practical comparison of weights-of-evidence and logistic regression models based on the notion of Markov random fields. In Proceedings of the 33rd Gocad Meeting. Nancy: ASGA.
Scheck-Wenderoth, M., & Lamarche, J. (2005). Crustal memory and basin evolution in the Central European Basin system: New insights from a 3D structural model. Tectonophysics, 397(1–2), 143–165.
Schmidt Mumm, A., & Wolfgramm, M. (2004). Fluid systems and mineralization in the north German and Polish basins. Geofluids, 4(4), 315–328.
Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post-mid-cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739.
Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35(3), 1–22.
Speczik, S. (1995). The Kupferschiefer mineralization of Central Europe: New aspects and major areas of future research. Ore Geology Reviews, 9(5), 411–426.
Speczik, S., Oszczepalski, S., Karwasiecka, M., & Nowak, G. (2007). Kupferschiefer: A hunt for new reserves. In Proceedings of the 9th Biennial SGA Meeting on Digging Deeper (pp. 237–240). Dublin: Irish Association for Economic Geology.
Stephenson, R. A., Narkiewicz, M., van Dadlez, R., Wees, J. D., & Andriessen, P. (2003). Tectonic subsidence modelling of the Polish basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156, 59–70.
Symons, D., Kawasaki, K., Walther, S., & Borg, G. (2011). Paleomagnetism of the Cu-Zn-Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen Germany. Mineralium Deposita, 46(2), 137–152.
Titeux, M. O. (2009). Restauration et incertitudes structurales: Changement d’échelles des propriétés mécaniques et gestion de la tectonique salifïère. PhD thesis, Institut National Polytechnique de Lorraine.
Vaughan, D. J., Sweeney, M. A., Friedrich, G., Diedel, R., & Haranczyk, C. (1989). The Kupferschiefer: An overview with an appraisal of the different types of mineralization. Economic Geology, 84(5), 1003–1027.
Verrall, P. (1981). Structural interpretation with application to North Sea problems. Course note no. 3. Joint Association for Petroleum Exploration courses (UK).
Vidal-Royo, O., Cardozo, N., Muoz, J. A., Hardy, S., & Maerten, L. (2012). Multiple mechanisms driving detachment folding as deduced from 3D reconstruction and geomechanical restoration: the Pico del Águila anticline (External Sierras, southern Pyrenees). Basin Research, 24(3), 295–313.
Wagner, T., Okrusch, M., Weyer, S., Lorenz, J., Lahaye, Y., Taubald, H., et al. (2010). The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Mineralium Deposita, 45(3), 217–239.
Wedepohl, K., & Rentzsch, J. (2006). The composition of brines in the early diagenetic mineralization of the Permian Kupferschiefer in Germany. Contributions to Mineralogy and Petrology, 152(3), 323–333.
Wellmann, J. F., Horowitz, F. G., Schill, E., & Regenauer-Lieb, K. (2010). Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics, 490(34), 141–151.
Withjack, M. O., & Callaway, S. (2000). Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence. AAPG Bulletin, 84, 627–651.
Withjack, M. O., Olson, J., & Peterson, E. (1990). Experimental models of extensional forced folds (1). AAPG Bulletin, 74, 1038–1054.
Wodzicki, A., & Piestrzyński, A. (1994). An ore genetic model for the Lubin–Sieroszowice mining district Poland. Mineralium Deposita, 29(1), 30–43.
Ziegler, P. (1982). Geological atlas of Western and Central Europe. Singapore: Shell International Petroleum Maatschappij B.V.