Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties
Tóm tắt
Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs in different branches of industry, agriculture, and medicine.
Tài liệu tham khảo
Abdel-Aziz SM, Hamed HA, Mouafi FE, Gad AS (2012) Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii. Util Beet Molasses 5(2):52–61
Barbosa AM, Steluti RM, Dekker RFH, Cardoso MS, da Silva MLC (2003) Structural characterization of botryosphaeran: a (1 → 3;1 → 6)-β-D glucan produced by the ascomyceteous fungus Botryosphaeria sp. Carbohydr Res 338:1691–1698. doi:10.1016/S0008-6215(03)00240-4
Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol 29:73–83. doi:10.1016/j.apsoil.2004.09.005
Bohn JA, BeMiller JN (1995) (1 → 3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–14
Bolla K, Gopinath BV, Shaheen SZ, Charya MAS (2010) Optimization of carbon and nitrogen sources of submerged culture process for the production of mycelia biomass and exopolysaccharides by Trametes versicolor. Int J Biotechnol Mol Biol Res 1(2):15–21
Breierová E, Vajcziková I, Sasinková V, Stratilová E, Fišera M, Gregor T, Šajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch 57c:634–639
Brown GD, Gordon S (2005) Immune recognition of fungal beta-glucans. Cell Microbiol 7:471–479
Chan GCF, Chan WK, Sze DMY (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 25:1–11. doi:10.1186/1756-8722-2-25
Chang ST, Miles PG (2004) Mushrooms. In: Cultivation, nutritional value, medicinal effect and environmental impact. Boca Raton, London
Chen J, Seviour R (2007) Medicinal importance of fungal β-(1-3), (1-6)-glucans. Mycol Res 111:635–652. doi:10.1016/j.mycres.2007.02.011
Chen W, Zhao Z, Chen SF, Li YQ (2008a) Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol 99:3187–3194. doi:10.1016/j.biortech.2007.05.049
Chen Y, Xie MY, Nie SP, Li C, Wang YX (2008b) Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem 107:231–241. doi:10.1016/j.foodchem.2007.08.021
Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y, Li H, Zhao Ch, Yang Y, Hou Y, Wang Ch, Li N (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102:8179–8184. doi:10.1016/j.biortech.2011.06.048
Chen Y, Mao W, Gao Y, Teng X, Zhu W, Chen Y, Zhao C, Li N, Wang C, Yan M, Shan J, Lin C, Guo T (2013a) Structural elucidation of an extracellular polysaccharide produced by the marine fungus Aspergillus versicolor. Carbohydr Polym 93(2):478–483. doi:10.1016/j.carbpol.2012.12.047
Chen Y, Mao W, Wang B, Zhou L, Gu Q, Chen Y, Zhao C, Lia N, Wang C, Shan J, Yan M, Lin C (2013b) Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresour Technol 132:178–181. doi:10.1016/j.biortech.2012.12.075
Chen Y, Mao W, Wang J, Zhu W, Zhao Ch, Li N, Wang Ch, Yan M, Guo T, Liu X (2013c) Preparation and structural elucidation of a glucomannogalactan from marine fungus Penicillium commune. Carbohydr Polym 97(2):293–299. doi:10.1016/j.carbpol.2013.05.004
Chen Y, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 17(2):219–228. doi:10.1007/s10126-015-9611-6
Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, Bae SH, Yun JW (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75:1257–1265. doi:10.1007/s00253-007-0972-2
Da Silva LJ, de Rezende Pinto F, do Amaral LA, Garcia-Cruz CH (2014) Biosorption of cadmium(II) and lead(II) from aqueous solution using exopolysaccharide and biomass produced by Colletotrichum sp. Desalin Water Treat 52:7878–7886. doi:10.1080/19443994.2013.833871
Datta K, Pirofski L-A (2006) Towards a vaccine for Cryptococcus neoformans: principles and caveats. FEMS Yeast Res 6:525–536. doi:10.1111/j.1567-1364.2006.00073.x
Demir MS, Yamaç M (2008) Antimicrobial activities of basidiocarp, submerged mycelium and exopolysaccharide of some native basidiomycetes strains. J Appl Biol Sci 2(3):89–93
Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. doi:10.1016/j.carbpol.2011.08.083
El Oirdi M, Abd A, Rahman El, Rigano L, Abdelbasset E, Hadrami A, Rodriguez MC, Fouad Daay F, Vojnov A, Bouaraba K (2011) Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato. Plant Cell 23:2405–2421
Elisashvili VI, Kachlishvili ET, Wasser SP (2009) Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production. Appl Biochem Microbiol 45(5):531–535. doi:10.1134/S0003683809050135
Fraga I, Coutinho J, Bezerra RM, Dias AA, Marques G, Nunes FM (2014) Influence of culture medium growth variables on Ganoderma lucidium exopolysaccharides structural features. Carbohydr Polym 111:936–946. doi:10.1016/j.carbpol.2014.05.047
Frases S, Nimrichter L, Viana NB, Nakouzi A, Casadevall A (2008) Cryptococcus neoformans capsular polysaccharide and exopolysaccharide fractions manifest physical, chemical, and antigenic differences. Eukaryot Cell 7(2):319–327. doi:10.1128/EC.00378-07
Guillamon E, Garcia-Laufente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, Martinez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715–723
Guo S, Mao W, Han Y, Zhang X, Yang Ch, Chen Y, Chen Y, Xua J, Li H, Qi X, Xu J (2010) Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioresour Technol 101(12):4729–4732. doi:10.1016/j.biortech.2010.01.125
Guo S, Mao W, Li Y, Tian J, Xu J (2013) Structural elucidation of the exopolysaccharide produced by fungus Fusarium oxysporum Y24-2. Carbohydr Res 365:9–13. doi:10.1016/j.carres.2012.09.026
He CY, Li WD, Guo SX, Lin SQ, Lin ZB (2006) Effect of polysaccharides from Ganoderma lucidium on streptozoctin-induced diabetic nephropathy in mice. J Asian Nat Prod Res 8(8):705–711. doi:10.1080/10286020500289071
He P, Geng L, Mao D, Xu C (2012) Production, characterization and antioxidant activity of exopolysaccharides from submerged culture of Morchella crassipes. Bioprocess Biosyst Eng 35(8):1325–1332. doi:10.1007/s00449-012-0720-6
Ho YC, Lin MT, Duan KJ, Chen YS (2008) The hepatoprotective activity against ethanol-induced cytotoxicity by aqueous extract of Antrodia cinnamomea. J Chin Inst Chem Eng 39:441–447
Hsu S, Ou C, Li J, Chuang T, Kuo H, Liu J, Chen C, Lin S, Su C, Kao M (2008) Ganoderma tsugae extracts inhibit colorectal cancer cell growth via G2/M cell cycle arrest. J Ethnopharmacol 120(3):394–401. doi:10.1016/j.jep.2008.09.025
Huang QL, Siu KC, Wang WQ, Cheung YC, Wu JY (2013) Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem 48:380–386. doi:10.1016/j.procbio.2013.01.001
Huanga T, Linb J, Caoa J, Zhanga P, Baia Y, Chena G, Chena K (2012) An exopolysaccharide from Trichoderma pseudokoningii and its apoptotic activity on human leukemia K562 cells. Carbohydr Polym 89:701–708. doi:10.1016/j.carbpol.2012.03.079
Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW (2003) Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J Appl Microbiol 94:708–719. doi:10.1046/j.1365-2672.2003.01903.x
Jia J, Zhang X, Hu YS, Wu Y, Wang QZ, Li NN, Guo QC, Dong XC (2009) Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ diabetic rats. Food Chem 115:32–36. doi:10.1016/j.foodchem.2008.11.043
Kim DH, Yang BK, Jeong SC, Hur NJ, Das S, Yun JW, Choi JW, Lee YS, Song CH (2001) A preliminary study on the hypoglycemic effect of the exopolymers produced by five different medicinal mushrooms. J Microbiol Biotechnol 11(1):167–171
Kim HS, Kim JY, Kang JS, Kim HM, Kim YO, Hong IP, Lee MK, Hong JT, Kim Y, Han S-B (2010) Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor for signalling. Food Chem Toxicol 48(7):1926–1933. doi:10.1016/j.fct.2010.04.036
Kogan G, Matulová M, Michalková E (2002) Extracellular polysaccharides of Penicillium vermiculatum. Z Naturforsch C 57c:452–458
Kozarski M, Klaus A, Niksic M, Jakovljevic D, Helsper JPFG, Van Griensven LJLD (2011) Antioxidative and immunomodulating activities of polisaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasieliensis, Ganoderma lucidium and Phellinus linteus. Food Chem 129:1667–1675. doi:10.1016/j.foodchem.2011.06.029
Kozarski M, Klaus A, Niksic M, Vrvic MM, Todorovic N, Jakovljevic D, Van Griensven LJLD (2012) Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J Food Compost Anal 26(1–2):144–153. doi:10.1016/j.jfca.2012.02.004
Kozarski MS, Klaus AS, Nikšić MP, Van Griensven LJLD, Vrvić MM, Jakovljević DM (2014) Polysaccharides of higher fungi: biological role, structure and antioxidative activity. Hem Ind 68(3):305–320. doi:10.2298/HEMIND121114056K
Lee WY, Park Y, Ahn JK, Ka KH, Park SY (2007) Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb Technol 40:249–254. doi:10.1016/j.enzimictec.2006.04.009
Lee JS, Kwon JS, Yun JS, Pahk JW, Shin WC, Lee SY, Hong EK (2010) Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohydr Polym 80:1011–1017
Leung PH, Zhao S, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelia culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114(4):1251–1256. doi:10.1016/j.foodchem.2008.10.081
Li R, Jiang X, Guan H (2010) Optimization of mycelium biomass and exopolysaccharides production by Hirsutella sp. in submerged fermentation and evaluation of exopolysaccharides antibacterial activity. Afr J Biotechnol 9(2):195–202
Li P, Luo C, Sun W, Lu Mou Y, Peng Y, Zhou L (2011) In vitro antioxidant activities of polysaccharides from endophytic fungus Fusarium oxysporum Dzf17. Afr J Microbiol Res 5(32):5990–5993. doi:10.5897/AJMR11.1342
Li P, Haiyu L, Jiajia M, Weibo S, Xiaohan W, Shiqiong L, Youliang P, Ligang Z (2014) Effects of oligosaccharides from endophytic Fusarium oxysporum Dzf17 on activities of defense-related enzymes in Dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17(4):156–161
Lian B, Wang B, Pan M, Liu C, Teng H-H (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98
Lin ES, Sung SC (2006) Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Int J Food Microbiol 108:182–187. doi:10.1016/j.ijfoodmicro.2005.11.010
Lindequist U, Niedermeyer THJ, Julich WD (2005) The pharmacological potential of mushrooms. 3:285–299
Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28(1–2):133–140. doi:10.1007/s10653-005-9022-0
Liu J, Gunn L, Hansen R, Yan J (2009) Combined yeast-derived β-glucan with anti-tumor monoclonal antibody for cancer immunotherapy. Exp Mol Pathol 86:208–214
Liu W, Wang H, Pang X, Yao W, Gao X (2010) Characterization and antioxidant activity of two low-molecular weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int J Biol Macromol 46(4):451–457. doi:10.1016/j.ijbiomac.2010.02.006
Lobanok AG, Babitskaya VG, Plenina LV, Puchkova TA, Osadchaya OV (2003) Composition and biological activity of submerged mycelium of the xylotrophic basidiomycete Lentinus edodes. Appl Biochem Microbiol 39(1):60–64. doi:10.1023/A:1021750127099
Ma X, Zhang H, Paterson EC, Chen L (2014) Enhancing exopolysaccharide antioxidant formation and yield from Phellinus species through medium optimization studies. Carbohydr Polym 107:214–220. doi:10.1016/j.carbpol.2014.02.077
Ma Z, Cui F, Gao X, Zhang J, Zheng L, Jia L (2015) Purification, characterization, antioxidant activity and anti-aging of exopolysaccharides by Flammulina velutipes SF-06. Antonie Van Leeuwenhoek 107(1):73–82. doi:10.1007/s10482-014-0305-2
Madla S, Methacanon P, Prasitsil M, Kirtikara K (2005) Characterization of biocompatible fungi-derived polymers that induce IL-8 production. Carbohydr Polym 59(3):275–280. doi:10.1016/j.carbpol.2004.07.002
Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90:683–689. doi:10.1016/j.carbpol.2012.05.097
Mahapatra S, Banerjee D (2013a) Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 97:627–634. doi:10.1016/j.carbpol.2013.05.039
Mahapatra S, Banerjee D (2013b) Fungal exopolisaccharide: production, composition and applications. Microbiol Insights 6:1–16. doi:10.4137/MBI.S10957
Mao X, Yu F, Wang N, Wu Y, Zou F, Wu K, Liu M, Ouyang J (2009) Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine 16(5):416–425. doi:10.1016/j.phymed.2008.12.011
Miranda-Nantes CCBO, Fonseca EAI, Zaia CTBV, Dekker RFH, Khaper N, Castro Barbosa AM (2011) Hypoglycemic and hypocholesterolemic rffects of botryosphaeran from Botryosphaeria rhodina MAMB-05 in diabetes-induced and hyperlipidemia conditions in rats. Mycobiology 39(3):187–193. doi:10.5941/MYCO.2011.39.3.187
Moon SH, Park CS, Kim YJ, Park YI (2006) Biosorption isotherms of Pb(II) and Zn (II) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp. KCTC 8637P. Process Biochem 41(2):312–316. doi:10.1016/j.procbio.2005.07.013
Nehad EA, El-Shamy AR (2010) Physiological studies on the production of exopolysaccharide by fungi. Agric Biol J N Am 1(6):1303–1308. doi:10.5251/abjna.2010.1.6.1303.1308
Olsson PA, Thingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887
Osińska-Jaroszuk M, Jaszek M, Mizerska-Dudka M, Blachowicz A, Rejczak T, Janusz G, Wydrych J, Polak J, Jarosz-Wilkołazka A, Kandefer-Szerszeń M (2014) Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BioMed Res Int 2014:1–10. doi:10.1155/2014/743812
Palacios I, Lozano M, Moro C, D’Arrigo M, Rostagno MA, Martinez JA, Garcia-Lafuente A, Guillamon E, Villares A (2011) Antioxidant properties of phenolic compounds occurring in edible mushroom. Food Chem 128:674–678. doi:10.1016/j.foodchem.2011.03.085
Radulović MD, Cvetković OG, Nikolić SD, Dordević DS, Jakovljević DM, Vrvić MM (2008) Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour Technol 99:6673–6677. doi:10.1016/j.biortech.2007.11.053
Raghukumar C, Shailaja MS, Parameswaran PS, Singh SK (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC # 312: involvement if lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35(4):373–379
Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203:91–108. doi:10.1016/j.chemgeo.2003.09.001
Rosling A, Roose T, Herrmann AM, Davidson FA, Finlay RD, Gadd GM (2009) Approaches to modelling mineral weathering by fungi. Fungal Biol Rev 23(4):1–7. doi:10.1016/j.fbr.2009.09.003
Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 135:585–592. doi:10.1016/S0923-2508(02)01372-4
Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Antonie Van Leeuwenhoek 84:135–145. doi:10.1023/A:1025421401536
Seneviratne G, Kecskés ML, Kennedy IR (2008) Biofilmed biofertilizers: novel inoculants for efficient nutrient use in plants. ACIAR Proc 130:126–130
Sheng XF (2005) Growth promoting and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37(10):1918–1922. doi:10.1016/j.soilbio.2005.02.026
Shih I, Chou B, Chen C, Wu J, Hsieh C (2008) Study of mycelia growth and bioactive polysaccharide production in batch and fed-batch culture of Grifola frondosa. Bioresour Technol 99(4):785–793. doi:10.1016/j.biortech.2007.01.030
Shu Ch, Lung M (2004) Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem 39:931–937. doi:10.1016/S0032-9592(03)00220-6
Silveira ML, Smiderle FR, Agostini F, Pereira EM, Bonatti-Chaves M, Wisbeck E, Ruthes AC, Sassaki GL, Cipriani TR, Furlan SA, Iacomini M (2015) Exopolysaccharide produced by Pleurotus sajor-caju: its chemical structure and anti-inflammatory activity. Int J Biol Macromol 75:90–96. doi:10.1016/j.ijbiomac.2015.01.023
Smiderle FR, Olsen LM, Ruthes AC, Czelusniak PA, Santana-Filho AP, Sassaki GL, Gorin PAJ, Iacomini M (2012) Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr Polym 87:368–376. doi:10.1016/j.carbpol.2011.07.063
Smirnou D, Hrubošová D, Kulhánek J, Švík K, Bobková L, Moravcová V, Krčmář M, Franke L, Velebný V (2014) Cryptococcus laurentii extracellular biopolymer production for application in wound management. Appl Biochem Biotechnol 174:1344–1353. doi:10.1007/s12010-014-1105-x
Smits MM (2009) Scale matters? exploring the effect of scale on fungal–mineral interactions. Fungal Biol Rev 23(4):132–137. doi:10.1016/j.fbr.2009.11.002
Tamm L, Thürig B, Fliessbach A, Goltlieb AE, Karavani S, Cohenb Y (2011) Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagen J Life Sci 58:131–137. doi:10.1016/j.njas.2011.01.001
Tang YJ, Zhang JJ (2002) Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidium, grown on lactose in a bioreactor. Biotechnol Lett 24:1023–1026. doi:10.1023/A:1015677313598
Telles CBS, Sabry DA, Almeida-Lima J, Costa MSSP, Melo-Silveira RF, Trindade ES, Sassaki GL, Wisbeck E, Furlan SA, Leite EL, Rocha HAO (2011) Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-caju alters its antioxidant, anticoagulant and antiproliferative properties in vitro. Carbohydr Polym 85:514–521. doi:10.1016/j.carbpol.2011.02.038
Vasconcelos AFD, Nilson KNK, Dekker RFH, Barbosa AM, Carbonero ER, Silveira JLM, Sassaki GL, da Silva R, Corradi da Silva MLC (2008) Three exopolysaccharides of the β-(1 → 6)-d-glucan type and a β-(1 → 3;1 → 6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydr Res 343:2481–2485. doi:10.1016/j.carres.2008.06.013
Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. doi:10.1007/s00374-004-0750-6
Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64(5):1263–1280. doi:10.1093/jxb/ert026
Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63(9):1405–1419. doi:10.1016/S0016-7037(99)00031-9
Wu J, Ding ZY, Zhang KC (2006) Improvement of exopolysaccharide production by macro-fungus Aricularia auricula in submerged culture. Enzyme Microb Technol 39:743–749. doi:10.1016/j.enzimictec.2005.12.012
Xiao B, Lian B, Sun L, Shao W (2012) Gene transcription response to weathering of K-bearing minerals by Aspergillus fumigatus. Chem Geol 306–307:1–9. doi:10.1016/j.chemgeo.2012.02.014
Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35(6):745–751. doi:10.1016/S0038-0717(03)00089-0
Yadav KL, Rahi DK, Soni SK (2014) An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: influence of fermentation conditions on exopolysaccharide (EPS) production. Appl Biochem Biotech 172(4):1898–1908. doi:10.1007/s12010-013-0630-3
Yadava KL, Rahi DK, Soni SK, Rahib S (2012) Diversity of exopolysaccharide producing fungi from foot hills of shivalik ranges of chandigarh capital region. Res Biotechol 3(4):11–18
Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu G, Senturk H (2009) Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharm Biol 47(2):168–174. doi:10.1080/13880200802436950
Yang B-K, Ha J-Y, Jeong SC, Das S, Yun J-W, Lee Y-S, Choi J-W, Song C-H (2000) Production of exo-polymers by submerged mycelial culture of Cordyceps militaris and its hypolipidemic effect. J Microbiol Biotechnol 10(6):784–788
Yang B-K, Kim D-H, Jeong S-C, Das S, Choi Y-S, Shin J-S, Lee SC, Song C-H (2002) Hypoglycemic effect of a Lentinus edodes exo-polymer produced from a submerged mycelial culture. Biosci Biotechnol Biochem 66(5):937–942. doi:10.1271/bbb.66.937
Yeh CW, Zang CZ, Lin CC, Kan SC, Chang WF, Shieh CJ, Liu YC (2014) Quantitative and morphologic analysis on exopolysaccharide and biomass production from a truffle endophytic fungus Hypocreales sp. NCHU01. J Taiwan Inst Chem E 45:108–114. doi:10.1016/j.jtice.2013.09.020
Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24(7):1059–1065. doi:10.1007/s11274-007-9575-4
Yu C, Kan S, Shu C, Lu T, Sun-Hwang L, Wang PS (2009) Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo. J Nutr Biochem 20(10):753–764. doi:10.1016/j.jnutbio.2008.07.004
Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB (2002) Hepatoprotective role of Ganoderma lucidium polysaccharide against BCG-induced immune liver injury in mice. World J Gastroenterol 15(8):728–733
Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19. doi:10.1016/j.tifs.2006.07.013
Zhang W, Yang J, Chen J, Hou Y, Han X (2010) Immunomodulatory and antitumour effects of an exopolysaccharide fraction from cultivated Cordyceps sinensis (Chinese caterpillar fungus) on tumour-bearing mice. Biotechnol Appl Biochem 42(1):9–15. doi:10.1042/BA20040183
Zhou LB, Chen B (2011) Bioactivities of water-soluble polysaccharides from Jison-grong mushroom: anti-breast carcinoma cell and antioxidant potential. Int J Biol Macromol 48(1):1–4. doi:10.1016/j.ijbiomac.2010.09.004