An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime

International Journal of Heat and Mass Transfer - Tập 53 - Trang 334-344 - 2010
Weerapun Duangthongsuk1, Somchai Wongwises1
1Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand

Tài liệu tham khảo

S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, ASME FED 231 (1995) 99. Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559 Li, 2002, Convective heat transfer and Flow characteristics of Cu-water nanofluid, Sci. China E, 45, 408 Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer, 125, 151, 10.1115/1.1532008 Tsai, 2004, Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance, Mater. Lett., 58, 1461, 10.1016/j.matlet.2003.10.009 Wen, 2004, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47, 5181, 10.1016/j.ijheatmasstransfer.2004.07.012 Yang, 2005, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48, 10.1016/j.ijheatmasstransfer.2004.09.038 Ding, 2005, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240 Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010 Heris, 2006, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer, 33, 529, 10.1016/j.icheatmasstransfer.2006.01.005 Heris, 2007, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, Int. J. Heat Fluids Flow, 28, 203, 10.1016/j.ijheatfluidflow.2006.05.001 He, 2007, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024 Nguyen, 2007, Heat transfer enhancement using Al2O3-water nanofluid for electronic liquid cooling system, Appl. Therm. Eng., 28, 1501, 10.1016/j.applthermaleng.2006.09.028 Ko, 2007, An experimental study on the pressure drop of nanofluids containing carbon nanotubes in the horizontal tube, Int. J. Heat Mass Transfer, 50, 4749, 10.1016/j.ijheatmasstransfer.2007.03.029 Chein, 2007, Experimental microchannel heat sink performance studies using nanofluids, Int. J. Therm. Sci., 46, 57, 10.1016/j.ijthermalsci.2006.03.009 Brinkman, 1952, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20, 571, 10.1063/1.1700493 Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5 Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, I&EC Fund., 1, 187, 10.1021/i160003a005 Duangthongsuk, 2008, Effect of thermophysical properties models on the prediction of the convective heat transfer coefficient for low concentration nanofluid, Int. Comm. Heat Mass Transfer, 35, 1320, 10.1016/j.icheatmasstransfer.2008.07.015 Duangthongsuk, 2009, Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52, 2059, 10.1016/j.ijheatmasstransfer.2008.10.023 Bentley, 1984, Temperature sensor characteristics and measurement system design, J. Phy. E: Sci. Instrum., 17, 430, 10.1088/0022-3735/17/6/002 F.J. Wasp, Solid–liquid slurry pipeline transportation, Trans. Tech, Berlin, 1977. Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801 Murshed, 2005, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005 Bruggeman, 1935, Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Annalen der Physik, 14, 636, 10.1002/andp.19354160705 Timofeeva, 2007, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phy. Rev., 76, 061203, 10.1103/PhysRevE.76.061203 Drew, 1999 Batchelor, 1977, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97, 10.1017/S0022112077001062 Wang, 1999, Thermal conductivity of nanoparticles-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486 Incropera, 1996 Fox, 2004 Gnielinski, 1976, New equations for heat and mass transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16, 359 Colebrook, 1939, Turbulent flow in pipes, with particular reference to the transition between the smooth and rough pipe laws, J. Inst. Civ. Eng. Lond., 11, 133, 10.1680/ijoti.1939.13150