Multifunctional electrospun nanofibers for wound application – Novel insights into the control of drug release and antimicrobial activity

Jing Wang1,2, Viktoria Planz1,2, Branko Vukosavljevic2, Maike Windbergs1,2
1Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
2Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbruecken, Germany

Tài liệu tham khảo

Sun, 2014, bFGF-grafted electrospun fibrous scaffolds via poly (dopamine) for skin wound healing, J. Mater. Chem. B, 2, 3636, 10.1039/C3TB21814G Said, 2011, Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria, Eur. J. Pharm. Biopharm., 79, 108, 10.1016/j.ejpb.2011.03.002 Ignatova, 2009, Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications, Macromol. Biosci., 9, 102, 10.1002/mabi.200800189 Contardi, 2017, Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings, Eur. J. Pharm. Sci., 104, 133, 10.1016/j.ejps.2017.03.044 Atiyeh, 2007, Effect of silver on burn wound infection control and healing: review of the literature, Burns, 33, 139, 10.1016/j.burns.2006.06.010 Azuma, 2015, Chitin, chitosan, and its derivatives for wound healing: Old and new materials, J. Funct. Biomater., 6, 104, 10.3390/jfb6010104 Min, 2004, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers, Polymer, 45, 7137, 10.1016/j.polymer.2004.08.048 Wang, 2017, Functional electrospun fibers for the treatment of human skin wounds, Eur. J. Pharm. Biopharm., 119, 283, 10.1016/j.ejpb.2017.07.001 Ru, 2015, Suspended, shrinkage-free, electrospun PLGA nanofibrous scaffold for skin tissue engineering, ACS Appl. Mater. Interf., 7, 10872, 10.1021/acsami.5b01953 Planz, 2016, Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers, Integr. Biol., 8, 775, 10.1039/C6IB00080K Tığlı, 2011, Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds, J. Biomater. Sci. Polym. Ed., 22, 207, 10.1163/092050609X12591500475424 Liu, 2010, Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing, J. Membr. Sci., 355, 53, 10.1016/j.memsci.2010.03.012 Semnani, 2017, Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering, Int. J. Polym. Mater. Polym. Biomater., 66, 149, 10.1080/00914037.2016.1190931 Ozkan, 2018, Antibacterial performance of PCL-chitosan core-shell scaffolds, J. Nanosci. Nanotechnol., 18, 2415, 10.1166/jnn.2018.14378 Tardajos, 2018, Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications, Carbohydr. Polym., 191, 127, 10.1016/j.carbpol.2018.02.060 Urbanek, 2017, The effect of polarity in the electrospinning process on PCL/chitosan nanofibres' structure, properties and efficiency of surface modification, Polymer, 124, 168, 10.1016/j.polymer.2017.07.064 Neves, 2011, Chitosan/Poly(ɛ-caprolactone) blend scaffolds for cartilage repair, Biomaterials, 32, 1068, 10.1016/j.biomaterials.2010.09.073 Liverani, 2017, Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents, Bioact. Mater., 3, 55, 10.1016/j.bioactmat.2017.05.003 Van der Schueren, 2012, Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system, Carbohydr. Polym., 88, 1221, 10.1016/j.carbpol.2012.01.085 Malheiro, 2010, New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications, Acta Biomater., 6, 418, 10.1016/j.actbio.2009.07.012 Boukamp, 1988, Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line, J. Cell Biol., 106, 761, 10.1083/jcb.106.3.761 Planz, 2017, Establishment of a cell-based wound healing assay for bio-relevant testing of wound therapeutics, J. Pharmacol. Toxicol. Methods, 89, 19, 10.1016/j.vascn.2017.10.003 Shalumon, 2010, Single step electrospinning of chitosan/poly (caprolactone) nanofibers using formic acid/acetone solvent mixture, Carbohydr. Polym., 80, 413, 10.1016/j.carbpol.2009.11.039 Pelipenko, 2013, The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes, Eur. J. Pharm. Biopharm., 84, 401, 10.1016/j.ejpb.2012.09.009 Smith, 2009, Nanostructured polymer scaffolds for tissue engineering and regenerative medicine, WIRESNanomed. Nanobiotechnol., 1, 226, 10.1002/wnan.26 Ebner, 2002, Topical use of dexpanthenol in skin disorders, Am. J. Clin. Dermatol., 3, 427, 10.2165/00128071-200203060-00005 Arima, 2007, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials, 28, 3074, 10.1016/j.biomaterials.2007.03.013 Seif, 2015, Overcoming drug crystallization in electrospun fibers – elucidating key parameters and developing strategies for drug delivery, Int. J. Pharm., 478, 390, 10.1016/j.ijpharm.2014.11.045 Howling, 2001, The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro, Biomaterials, 22, 2959, 10.1016/S0142-9612(01)00042-4 Wiegand, 2010, Molecular-weight-dependent toxic effects of chitosans on the human keratinocyte cell line HaCaT, Skin Pharmacol. Physiol., 23, 164, 10.1159/000276996 James, 2008, Biofilms in chronic wounds, Wound Repair Regen., 16, 37, 10.1111/j.1524-475X.2007.00321.x Trøstrup, 2013, What is new in the understanding of non healing wounds epidemiology, pathophysiology, and therapies, Ulcers, 2013, 10.1155/2013/625934