Markov invariants, plethysms, and phylogenetics
Tài liệu tham khảo
Allman, 2003, Phylogenetic invariants of the general Markov model of sequence mutation, Math. Biosci., 186, 113, 10.1016/j.mbs.2003.08.004
Baker, 2003
Barry, 1987, Asynchronous distance between homologous DNA sequences, Biometrics, 43, 261, 10.2307/2531811
Bashford, 2004, U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes, J. Phys. A, 37, L1, 10.1088/0305-4470/37/8/L01
Biedenharn, 1981
Biedenharn, 1990, Inhomogeneous basis set of symmetric polynomials defined by tableaux, Proc. Natl. Acad. Sci. USA, 87, 1441, 10.1073/pnas.87.4.1441
Bryant, D., Galtier, N., Poursat, M.-A., 2005. Likelihood Calculation in Molecular Phylogenetics. Mathematics of Evolution and Phylogenetics. Oxford University Press, Oxford, pp. 33–62.
Burnham, 2002
Casanellas, 2007, Performance of a new invariants method on homogeneous and nonhomogeneous quartet trees, Mol. Biol. Evol., 24, 288, 10.1093/molbev/msl153
Cavender, 1987, Invariants of phylogenies in a simple case with discrete states, J. Class., 4, 57, 10.1007/BF01890075
Coffman, 2000, Distributed entanglement, Phys. Rev. A, 61, 052306, 10.1103/PhysRevA.61.052306
Drummond, 2001, The inference of stepwise changes in substitution rates using serial sequence samples, Mol. Biol. Evol., 18, 1365, 10.1093/oxfordjournals.molbev.a003920
Dur, 2000, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 62, 062314, 10.1103/PhysRevA.62.062314
Eriksson, N., Using invariants for phylogenetic tree construction, to appear. eprint arXiv:0709.2890.
Eriksson, N., Yao, Y., 2008. Metric learning for phylogenetic invariants. eprint arXiv:q-bio/0703034.
Evans, 1993, Invariants of some probability models used in phylogenetic inference, Ann. Statist., 21, 355, 10.1214/aos/1176349030
Fauser, 2006, New branching rules induced by plethysm, J. Phys. A, 39, 2611, 10.1088/0305-4470/39/11/006
Felsenstein, J., 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.
Fulton, 1991, 10.1007/978-1-4612-0979-9
Goodman, 1970, An intrinsic time for non-stationary finite Markov chains, Probab. Theor. Relat. Field, 16, 165
Goodman, 1998
Hillis, 1994, Hobgoblin of phylogenetics?, Nature, 369, 363, 10.1038/369363a0
Huelsenbeck, 1995, Performance of phylogenetic methods in simulation, Syst. Biol., 44, 17, 10.1093/sysbio/44.1.17
Huelsenbeck, 2004, Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo, Mol. Biol. Evol., 21, 1123, 10.1093/molbev/msh123
Huson, 1999, Disk-covering, a fast-converging method for phylogenetic tree reconstruction, J. Comput. Biol., 6, 369, 10.1089/106652799318337
Iosifescu, 1980
Itzykson, 1980
Jarvis, 2005, Path integral formulation and Feynman rules for phylogenetic branching models, J. Phys. A, 38, 9621, 10.1088/0305-4470/38/44/002
Jayaswal, 2005, Estimation of phylogeny using a general Markov model, Evol. Bioinformatics Online, 1, 62
Jermiin, 2003, Hetero: a program to simulate the evolution of DNA on four-taxon trees, Appl. Bioinformatics, 2, 159
Jermiin, 2004, The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated, Syst. Biol., 53, 638, 10.1080/10635150490468648
Jermiin, L.S., Jayaswal, V., Ababneh, F., Robinson, J., 2008. Phylogenetic model evaluation. Bioinformatics, Data, Sequences Analysis and Evolution, vol. I. Humana Press, Totowa, NJ, pp. 331–363.
Johnson, 1985, Markov-type Lie groups in GL(n,R), J. Math. Phys., 26, 252, 10.1063/1.526654
Kelarev, 2002
King, 1975, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys. A, 8, 429, 10.1088/0305-4470/8/4/004
Lake, 1987, A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony, Mol. Biol. Evol., 4, 167
Lake, 1994, Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances, Proc. Natl. Acad. Sci., 91, 1455, 10.1073/pnas.91.4.1455
Landsberg, J.M., Manivel, L., 2008. Generalizations of Strassen's equations for secant varieties of Segre varieties. Commun. Algebra, to appear. eprint arXiv:math/0601097.
Littlewood, 1940
Littlewood, 1955, Plethysm and the inner product of S-functions, J. Lond. Math. Soc., s1–32, 18
Lockhart, 1994, Recovering evolutionary trees under a more realistic model of sequence evolution, Mol. Biol. Evol., 11, 605
Lockhart, 1998, A covariotide model describes the evolution of oxygenic photosynthesis, Mol. Biol. Evol., 15, 1183, 10.1093/oxfordjournals.molbev.a026025
Lockhart, P.J., Novis, P., Milligan, B.G., Riden, J., Rambaut, A., Larkum, A.W.D., 2006. Heterotachy and tree building: a case study with plastids and eubacteria. Mol. Biol. Evol. 40–45.
MacDonald, 1979
Massingham, T., Goldman, N., 2007. Statistics of the log–det estimator. MBE Advance Access published August 16, 2007.
McCullagh, 1987
Molev, A., 2007. On the fusion procedure for the symmetric group. Rep. Math. Physics, to appear. eprint arXiv:math/0612207.
Mourad, 2004, On a Lie-theoretic approach to generalised doubly stochastic matrices and applications, Linear and Multilinear Algebra, 52, 99, 10.1080/0308108031000140687
Olver, 2003
Pagel, 2004, A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data, Syst. Biol., 53, 571, 10.1080/10635150490468675
Paradis, 2004, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, 20, 289, 10.1093/bioinformatics/btg412
R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Semple, 2003
Seshadri, 1962, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto. Univ., 1, 403, 10.1215/kjm/1250525012
Steel, 2005, Should phylogenetic models be trying to ‘fit an elephant’?, Genetics, 21, 307
Steel, 1994, Recovering a tree from the leaf colourations it generates under a Markov model, Appl. Math. Lett., 7, 19, 10.1016/0893-9659(94)90024-8
Steel, 1993, A complete family of phylogenetic invariants for any number of taxa under Kimura's 3ST model, N.Z. J. Bot., 31, 289, 10.1080/0028825X.1993.10419506
Steel, 1994, Reconstructing trees when sequence sites evolve at variable rates, J. Comput. Biol., 1, 153, 10.1089/cmb.1994.1.153
Sturmfels, B., Open problems in algebraic statistics. In: Putinar, M., Sullivant, S. (Eds.), Emerging Applications of Algebraic Geometry, I.M.A. Volumes in Mathematics and its Applications, to appear. eprint arXiv:math/0707.4558.
Sumner, J.G., 2006. Entanglement, Invariants, and Phylogenetics. Ph.D. Thesis, University of Tasmania 〈http://eprints.utas.edu.au〉.
Sumner, J.G., 2008. Phylogenetic quartet inference using the squangles. University of Sydney 〈http://www.it.usyd.edu.au/∼mcharles/software〉.
Sumner, 2005, Entanglement invariants and phylogenetic branching, J. Math. Biol., 51, 18, 10.1007/s00285-004-0309-z
Sumner, 2006, Using the tangle: a consistent construction of phylogenetic distance matrices, Math. Biosci., 204, 49, 10.1016/j.mbs.2006.05.008
Thorne, 1998, Estimating the rate of evolution of the rate of molecular evolution, Mol. Biol. Evol., 15, 1647, 10.1093/oxfordjournals.molbev.a025892
Weitzenböck, 1931, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231, 10.1007/BF02547779
Weyl, 1950
Whippman, 1965, Branching rules for simple Lie groups, J. Math. Phys., 6, 1534, 10.1063/1.1704691
Wolfram Research Inc., 2005. Mathematica 5.2.
Wybourne, B.G., 2004. Schur: an interactive programme for calculating properties of Lie groups. version 6.03. http://sourceforge.net/projects/schur.
Zharkikh, 1994, Estimation of evolutionary distance between nucleotide sequences, J. Mol. Evol., 39, 315, 10.1007/BF00160155