Markov invariants, plethysms, and phylogenetics

Journal of Theoretical Biology - Tập 253 - Trang 601-615 - 2008
J.G. Sumner1,2, M.A. Charleston1,3,4, L.S. Jermiin5,3,4, P.D. Jarvis2
1School of Information Technologies, University of Sydney, NSW 2006, Australia
2School of Mathematics and Physics, University of Tasmania, TAS 7001, Australia
3Centre for Mathematical Biology, University of Sydney, NSW 2006, Australia
4Sydney Bioinformatics, University of Sydney, NSW 2006, Australia
5School of Biological Sciences, University of Sydney, NSW 2006, Australia

Tài liệu tham khảo

Allman, 2003, Phylogenetic invariants of the general Markov model of sequence mutation, Math. Biosci., 186, 113, 10.1016/j.mbs.2003.08.004 Baker, 2003 Barry, 1987, Asynchronous distance between homologous DNA sequences, Biometrics, 43, 261, 10.2307/2531811 Bashford, 2004, U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes, J. Phys. A, 37, L1, 10.1088/0305-4470/37/8/L01 Biedenharn, 1981 Biedenharn, 1990, Inhomogeneous basis set of symmetric polynomials defined by tableaux, Proc. Natl. Acad. Sci. USA, 87, 1441, 10.1073/pnas.87.4.1441 Bryant, D., Galtier, N., Poursat, M.-A., 2005. Likelihood Calculation in Molecular Phylogenetics. Mathematics of Evolution and Phylogenetics. Oxford University Press, Oxford, pp. 33–62. Burnham, 2002 Casanellas, 2007, Performance of a new invariants method on homogeneous and nonhomogeneous quartet trees, Mol. Biol. Evol., 24, 288, 10.1093/molbev/msl153 Cavender, 1987, Invariants of phylogenies in a simple case with discrete states, J. Class., 4, 57, 10.1007/BF01890075 Coffman, 2000, Distributed entanglement, Phys. Rev. A, 61, 052306, 10.1103/PhysRevA.61.052306 Drummond, 2001, The inference of stepwise changes in substitution rates using serial sequence samples, Mol. Biol. Evol., 18, 1365, 10.1093/oxfordjournals.molbev.a003920 Dur, 2000, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A, 62, 062314, 10.1103/PhysRevA.62.062314 Eriksson, N., Using invariants for phylogenetic tree construction, to appear. eprint arXiv:0709.2890. Eriksson, N., Yao, Y., 2008. Metric learning for phylogenetic invariants. eprint arXiv:q-bio/0703034. Evans, 1993, Invariants of some probability models used in phylogenetic inference, Ann. Statist., 21, 355, 10.1214/aos/1176349030 Fauser, 2006, New branching rules induced by plethysm, J. Phys. A, 39, 2611, 10.1088/0305-4470/39/11/006 Felsenstein, J., 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Fulton, 1991, 10.1007/978-1-4612-0979-9 Goodman, 1970, An intrinsic time for non-stationary finite Markov chains, Probab. Theor. Relat. Field, 16, 165 Goodman, 1998 Hillis, 1994, Hobgoblin of phylogenetics?, Nature, 369, 363, 10.1038/369363a0 Huelsenbeck, 1995, Performance of phylogenetic methods in simulation, Syst. Biol., 44, 17, 10.1093/sysbio/44.1.17 Huelsenbeck, 2004, Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo, Mol. Biol. Evol., 21, 1123, 10.1093/molbev/msh123 Huson, 1999, Disk-covering, a fast-converging method for phylogenetic tree reconstruction, J. Comput. Biol., 6, 369, 10.1089/106652799318337 Iosifescu, 1980 Itzykson, 1980 Jarvis, 2005, Path integral formulation and Feynman rules for phylogenetic branching models, J. Phys. A, 38, 9621, 10.1088/0305-4470/38/44/002 Jayaswal, 2005, Estimation of phylogeny using a general Markov model, Evol. Bioinformatics Online, 1, 62 Jermiin, 2003, Hetero: a program to simulate the evolution of DNA on four-taxon trees, Appl. Bioinformatics, 2, 159 Jermiin, 2004, The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated, Syst. Biol., 53, 638, 10.1080/10635150490468648 Jermiin, L.S., Jayaswal, V., Ababneh, F., Robinson, J., 2008. Phylogenetic model evaluation. Bioinformatics, Data, Sequences Analysis and Evolution, vol. I. Humana Press, Totowa, NJ, pp. 331–363. Johnson, 1985, Markov-type Lie groups in GL(n,R), J. Math. Phys., 26, 252, 10.1063/1.526654 Kelarev, 2002 King, 1975, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys. A, 8, 429, 10.1088/0305-4470/8/4/004 Lake, 1987, A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony, Mol. Biol. Evol., 4, 167 Lake, 1994, Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances, Proc. Natl. Acad. Sci., 91, 1455, 10.1073/pnas.91.4.1455 Landsberg, J.M., Manivel, L., 2008. Generalizations of Strassen's equations for secant varieties of Segre varieties. Commun. Algebra, to appear. eprint arXiv:math/0601097. Littlewood, 1940 Littlewood, 1955, Plethysm and the inner product of S-functions, J. Lond. Math. Soc., s1–32, 18 Lockhart, 1994, Recovering evolutionary trees under a more realistic model of sequence evolution, Mol. Biol. Evol., 11, 605 Lockhart, 1998, A covariotide model describes the evolution of oxygenic photosynthesis, Mol. Biol. Evol., 15, 1183, 10.1093/oxfordjournals.molbev.a026025 Lockhart, P.J., Novis, P., Milligan, B.G., Riden, J., Rambaut, A., Larkum, A.W.D., 2006. Heterotachy and tree building: a case study with plastids and eubacteria. Mol. Biol. Evol. 40–45. MacDonald, 1979 Massingham, T., Goldman, N., 2007. Statistics of the log–det estimator. MBE Advance Access published August 16, 2007. McCullagh, 1987 Molev, A., 2007. On the fusion procedure for the symmetric group. Rep. Math. Physics, to appear. eprint arXiv:math/0612207. Mourad, 2004, On a Lie-theoretic approach to generalised doubly stochastic matrices and applications, Linear and Multilinear Algebra, 52, 99, 10.1080/0308108031000140687 Olver, 2003 Pagel, 2004, A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data, Syst. Biol., 53, 571, 10.1080/10635150490468675 Paradis, 2004, APE: analyses of phylogenetics and evolution in R language, Bioinformatics, 20, 289, 10.1093/bioinformatics/btg412 R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Semple, 2003 Seshadri, 1962, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto. Univ., 1, 403, 10.1215/kjm/1250525012 Steel, 2005, Should phylogenetic models be trying to ‘fit an elephant’?, Genetics, 21, 307 Steel, 1994, Recovering a tree from the leaf colourations it generates under a Markov model, Appl. Math. Lett., 7, 19, 10.1016/0893-9659(94)90024-8 Steel, 1993, A complete family of phylogenetic invariants for any number of taxa under Kimura's 3ST model, N.Z. J. Bot., 31, 289, 10.1080/0028825X.1993.10419506 Steel, 1994, Reconstructing trees when sequence sites evolve at variable rates, J. Comput. Biol., 1, 153, 10.1089/cmb.1994.1.153 Sturmfels, B., Open problems in algebraic statistics. In: Putinar, M., Sullivant, S. (Eds.), Emerging Applications of Algebraic Geometry, I.M.A. Volumes in Mathematics and its Applications, to appear. eprint arXiv:math/0707.4558. Sumner, J.G., 2006. Entanglement, Invariants, and Phylogenetics. Ph.D. Thesis, University of Tasmania 〈http://eprints.utas.edu.au〉. Sumner, J.G., 2008. Phylogenetic quartet inference using the squangles. University of Sydney 〈http://www.it.usyd.edu.au/∼mcharles/software〉. Sumner, 2005, Entanglement invariants and phylogenetic branching, J. Math. Biol., 51, 18, 10.1007/s00285-004-0309-z Sumner, 2006, Using the tangle: a consistent construction of phylogenetic distance matrices, Math. Biosci., 204, 49, 10.1016/j.mbs.2006.05.008 Thorne, 1998, Estimating the rate of evolution of the rate of molecular evolution, Mol. Biol. Evol., 15, 1647, 10.1093/oxfordjournals.molbev.a025892 Weitzenböck, 1931, Über die Invarianten von linearen Gruppen, Acta Math., 58, 231, 10.1007/BF02547779 Weyl, 1950 Whippman, 1965, Branching rules for simple Lie groups, J. Math. Phys., 6, 1534, 10.1063/1.1704691 Wolfram Research Inc., 2005. Mathematica 5.2. Wybourne, B.G., 2004. Schur: an interactive programme for calculating properties of Lie groups. version 6.03. http://sourceforge.net/projects/schur. Zharkikh, 1994, Estimation of evolutionary distance between nucleotide sequences, J. Mol. Evol., 39, 315, 10.1007/BF00160155