Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems
Tài liệu tham khảo
Ding, 2013
Li, 2012, Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and Markov delays, Automatica, 48, 159, 10.1016/j.automatica.2011.09.045
Wang, 2011, Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal Process., 91, 1182, 10.1016/j.sigpro.2010.11.004
Ding, 2013, Decomposition based fast least squares algorithm for output error systems, Signal Process., 93, 1235, 10.1016/j.sigpro.2012.12.013
Fang, 2011, On stable simultaneous input and state estimation for discrete-time linear systems, Int. J. Adapt. Control Signal Process., 25, 671, 10.1002/acs.1230
Shi, 2010, Kalman filter-based identification for systems with randomly missing measurements in a network environment, Int. J. Control, 83, 538, 10.1080/00207170903273987
Ding, 2013, Combined state and least squares parameter estimation algorithms for dynamic systems, Appl. Math. Model., 37, 37
Scarpiniti, 2013, Nonlinear spline adaptive filtering, Signal Process., 93, 772, 10.1016/j.sigpro.2012.09.021
Carini, 2013, Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences, Signal Process., 93, 1210, 10.1016/j.sigpro.2012.12.012
Zhang, 2011, Robust FIR equalization for time-varying communication channels with intermittent observations via an LMI approach, Signal Process., 91, 1651, 10.1016/j.sigpro.2011.01.011
Umoh, 2010, An affine projection-based algorithm for identification of nonlinear Hammerstein systems, Signal Process., 90, 2020, 10.1016/j.sigpro.2010.01.004
Mileounis, 2013, A sparsity driven approach to cumulant based identification and order determination, Signal Process., 93, 1892, 10.1016/j.sigpro.2013.02.006
Dehghan, 2010, Matrix equations over (R, S)-symmetric and (R, S)-skew symmetric matrices, Comput. Math. Appl., 59, 3583, 10.1016/j.camwa.2010.03.052
Wang, 2010, Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Comput. Math. Appl., 59, 3092, 10.1016/j.camwa.2010.02.030
Ding, 2011, Parameter estimation with scarce measurements, Automatica, 47, 1646, 10.1016/j.automatica.2011.05.007
Ding, 2013, Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling, Appl. Math. Model., 37, 1694, 10.1016/j.apm.2012.04.039
Han, 2010, Hierarchical least squares based iterative identification for multivariable systems with moving average noises, Math. Comput. Model., 51, 1213, 10.1016/j.mcm.2010.01.003
Zhang, 2011, Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems, Comput. Math. Appl., 61, 672, 10.1016/j.camwa.2010.12.014
Ding, 2010, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Trans. Autom. Control, 55, 1976, 10.1109/TAC.2010.2050713
Ding, 2013, Coupled-least-squares identification for multivariable systems, IET Control Theory Appl., 7, 68, 10.1049/iet-cta.2012.0171
Zhang, 2011, Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods, Math. Comput. Model., 53, 1810, 10.1016/j.mcm.2010.12.059
Zhang, 2011, Bias compensation methods for stochastic systems with colored noise, Appl. Math. Model., 35, 1709, 10.1016/j.apm.2010.10.003
Ding, 2010, Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digit. Signal Process., 20, 664, 10.1016/j.dsp.2009.10.012
Vörös, 2002, Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics, IEEE Trans. Autom. Control, 47, 184, 10.1109/9.981742
Vörös, 2003, Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones, IEEE Trans. Autom. Control, 48, 2203, 10.1109/TAC.2003.820146
Vörös, 2007, Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities, Syst. Control Lett., 56, 99, 10.1016/j.sysconle.2006.08.001
Liu, 2010, Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems, Comput. Math. Appl., 59, 2615, 10.1016/j.camwa.2010.01.030
Xiao, 2011, Parameter estimation for nonlinear dynamical adjustment models, Math. Comput. Model., 54, 1561, 10.1016/j.mcm.2011.04.027
Yao, 2012, Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average (CARMA) systems, Comput. Math. Appl., 63, 975, 10.1016/j.camwa.2011.12.002
H.B. Chen, G.Y. Yao, R. Ding, A decomposition based least squares iterative parameter estimation algorithm for controlled autoregressive autoregressive moving average systems, in: Third International Conference on Information Science and Technology, Yangzhou, China, March 23–25, 2013, pp. 308–312.
Ding, 2012, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems, Proc. Inst. Mech. Eng. Part I, 226, 43
Wang, 2010, Input-output data filtering based recursive least squares parameter estimation for CARARMA systems, Digit. Signal Process., 20, 991, 10.1016/j.dsp.2009.12.006
Ding, 2013, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle, IET Control Theory Appl., 7, 176, 10.1049/iet-cta.2012.0313
Ding, 2013, Two-stage parameter estimation algorithms for Box–Jenkins systems, IET Signal Process., 7, 646, 10.1049/iet-spr.2012.0183
Duan, 2012, Two-stage recursive least squares parameter estimation algorithm for output error models, Math. Comput. Model., 55, 1151, 10.1016/j.mcm.2011.09.039
Ding, 2013, Two-stage least squares based iterative estimation algorithm for CARARMA system modeling, Appl. Math. Model., 37, 4798, 10.1016/j.apm.2012.10.014
Wang, 2010, Gradient-based iterative parameter estimation for Box–Jenkins systems, Comput. Math. Appl., 60, 1200, 10.1016/j.camwa.2010.06.001
Liu, 2010, Least squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data, Digit. Signal Process., 20, 1458, 10.1016/j.dsp.2010.01.004
Golub, 1996
Wang, 2012, Hierarchical least squares estimation algorithm for Hammerstein-Wiener systems, IEEE Signal Process. Lett., 19, 825, 10.1109/LSP.2012.2221704
Wang, 2013, Data filtering based recursive least squares algorithm for Hammerstein-systems using the key-term separation principle, Information Sciences, 222, 203, 10.1016/j.ins.2012.07.064
Ding, 2013, Newton iterative identification for a class of output nonlinear systems with moving average noises, Nonlinear Dynamics, 74, 21, 10.1007/s11071-013-0943-3
D.Q. Wang, F. Ding, X.M. Liu, Least squares algorithm for an input nonlinear system with a dynamic subspace state space model, Nonlinear Dynamics 2014, 10.1007/s11071-013-1048-8.