Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US

Springer Science and Business Media LLC - Tập 25 - Trang 4974-4988 - 2017
Chase S. Brewster1,2, Virender K. Sharma1, Leslie Cizmas1, Thomas J. McDonald1
1Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, USA
2TDI-Brooks International, College Station, USA

Tóm tắt

The Lower Fox River is a 39 mile section which supports approximately 270,000 rural inhabitants across 18 counties, 303,000 metropolitan residents in Green Bay and Appleton, Wisconsin, and several large industrial complexes such as paper mills and power plants. This paper presents the distribution and concentrations of aliphatic (n-alkanes) and aromatic hydrocarbons (polycyclic aromatic hydrocarbons [PAHs]) as well as total organic carbon (TOC) in the Lower Fox River to identify the sources of hydrocarbon contamination. Excluding one outlier, percent TOC values were between 0.73 and 19.9% with an average value of 6.74%. Total n-alkanes ranged from 3.51 μg/g to 117 μg/g and showed a strong presence of odd carbon-numbered n-alkane ratios (range of C25 to C35), suggesting source input from terrestrial biomass. The mean polycyclic aromatic hydrocarbon (PAH) concentration was 24,800 ng/g. High molecular weight PAH concentrations dominated the distribution of hydrocarbon contaminants. Cross-plots of PAHs were used to compare diagnostic source ratios of benz[a]anthracene (BaA), chrysene (Chr), fluoranthene (Flu), pyrene (Pyr), anthracene (Ant), phenanthrene (Phe), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BghiP) by depth and area. PAH ratios varied slightly with the core depth. Deeper core sections indicated the presence of biomass combustion while the upper core sections indicated combustion of both petroleum and biomass. The PAH toxicity of one core was estimated using toxicity equivalency factors, and the benzo[a]pyrene toxic equivalence quotient totaled 2,293 ng/g-dry wt. Levels of PAHs in sediments are compared with established regulatory values and recommendations are made.

Tài liệu tham khảo

Acquavita A, Falomo J, Predonzani S, Tamberlich F, Bettoso N, Mattassi G (2014) The PAH level, distribution and composition in surface sediments from a Mediterranean lagoon: the Marano and Grado lagoon (northern Adriatic Sea, Italy). Mar Pollut Bull 81(1):234–241. https://doi.org/10.1016/j.marpolbul.2014.01.041 Agah H, Mehdinia A, Bastami KD, Rahmanpour S (2017) Polycyclic aromatic hydrocarbon pollution in the surface water and sediments of Chabahar Bay. Oman Sea Mar Pollut Bull doi 115(1-2):515–524. https://doi.org/10.1016/j.marpolbul.2016.12.032 Agency for Toxic Substances and Disease Registry (1995) Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). U.S. Department of Health and Human Services, Public Health Service (Web access: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=122&tid=25) Ares J, Eckl PM, Raffelsberger I (2000) Genotoxicity at low level dose of inspirable urban ambient air particulate in a semiarid regime. Environ Monit Assess 63(3):389–408 Bajt O (2014) Aliphatic and polycyclic aromatic hydrocarbons in gulf of trieste sediments (northern adriatic): potential impacts of maritime traffic. Bull Environ Contam Toxicol 93(3):299–305. https://doi.org/10.1007/s00128-014-1321-7 Bastami KD, Afkhami M, Ehsanpour M, Kazaali A, Mohammadizadeh M, Haghparast S, Soltani F, Zanjani SA, Ghorghani NF, Pourzare R (2013) Polycyclic aromatic hydrocarbons in the coastal water, surface sediment and mullet Liza klunzingeri from northern part of Hormuz strait (Persian Gulf). Mar Pollut Bull 76(1-2):411–416. https://doi.org/10.1016/j.marpolbul.2013.08.018 Bastami KD, Afkhami M, Ehsanpour M, Mohammadizadeh M, Haghparast S, Soltani F, Zanjani SA, Ghorghani NF, Pourzare R (2014) Polycyclic aromatic hydrocarbons in the coastal water, surface sediment and mullet Liza Klunzingeri from northern part of Hormuz Strait (Persian gulf). Mar Pollut Bull 76:411–416 Chen C, Chen C, Dong C, Kao C (2013) Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor. Taiwan Sci Total Environ 463-464:1174–1181. https://doi.org/10.1016/j.scitotenv.2012.06.101 Costa E, Piazza V, Gambardella C, Moresco R, Prato E, Biandolino F, Cassin D, Botter M, Maurizio D, D’Adamo R, Fabbrocini A, Faimali M, Garaventa F (2016) Ecotoxicological effects of sediments from Mar Piccolo, South Italy: toxicity testing with organisms from different trophic levels. Environ Sci Pollut Res 23(13):12755–12769. https://doi.org/10.1007/s11356-015-5471-x Crane J (2014) Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban storm water pond sediments in Minnesota. USA Arch Environ Contam Toxicol 66:176–200 Cucak DI, Spasojevic JM, Babic OB, Maletic SP, Simeunovic JB, Roncevic SD, Dalmacija BD, Tamaš I, Radnovic DV (2017) A chemical and microbiological characterization and toxicity assessment of the Pancevo industrial complex wastewater canal sediments, Serbia. Environ Sci Pollut Res 24(9):8458–8468. https://doi.org/10.1007/s11356-017-8513-8 Dvorská A, Lammel G, Klánová J (2011) Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmos Environ 45(2):420–427. https://doi.org/10.1016/j.atmosenv.2010.09.063 Eguvbe PM, Iwegbue CMA, Ogala JE, Nwajei GE, Egboh SHO (2014) Distribution of polycyclic aromatic hydrocarbons (PAHs) in sediment cores of selected creeks in delta state. Nigeria Environ Forensics 15(2):121–133. https://doi.org/10.1080/15275922.2014.890147 Essien JP, Eduok SI, Olajire AA (2011) Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River estuary mangrove ecosystem. Environ Monit Assess 176(1-4):99–107. https://doi.org/10.1007/s10661-010-1569-2 Garcia MR, Mirlean N, Baisch PR, Caramão EB (2010) Assessment of polycyclic aromatic hydrocarbon influx and sediment contamination in an urbanized estuary. Environ Monit Assess 168(1-4):269–276. https://doi.org/10.1007/s10661-009-1110-7 Gonçalves C, Teixeira C, Basto MCP, Almeida CMR (2016) PAHs levels in Portuguese estuaries and lagoons: salt marsh plants as potential agents for the containment of PAHs contamination in sediments. Reg Stud Mar Sci 7:211–221. https://doi.org/10.1016/j.rsma.2016.05.004 Hamilton S, Cline J (1981) Hydrocarbons Associated with Suspended Matter in the Green River, Washington. NOAA Technical Memorandum ERL PMEL-30, Boulder, Colorado: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories Herbstman JB, Tang D, Zhu D, Qu L, Sjödin A, Li Z, Camann D, Perera FP (2012) Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect Hu N, Huang P, Liu J, Ma D, Shi X, Mao J, Liu Y (2014) Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environ Earth Sci 71(2):873–883. https://doi.org/10.1007/s12665-013-2490-0 Huang X, Chen S, Zeng Z, Pu X, Hou Q (2017a) Characteristics of hydrocarbons in sediment core samples from the northern Okinawa trough. Mar Pollut Bull 115(1-2):507–514. https://doi.org/10.1016/j.marpolbul.2016.12.034 Huang Y, Liu M, Wang R, Khan SK, Gao D, Zhang Y (2017b) Characterization and source apportionment of PAHs from a highly urbanized river sediments based on land use analysis. Chemosphere 184:1334–1345. https://doi.org/10.1016/j.chemosphere.2017.06.117 Jaward FM, Alegria HA, Reyes JGG, Hoare A (2012) Levels of PAHs in the waters, sediments, and shrimps of estero de Urias, an estuary in Mexico, and their toxicological effects. Sci World J 2012:1–9. https://doi.org/10.1100/2012/687034 Joyce AS, Portis LM, Parks AN, Burgess RM (2016) Evaluating the relationship between equilibrium passive sampler uptake and aquatic organism bioaccumulation. Environ Sci Technol 50(21):11437–11451. https://doi.org/10.1021/acs.est.6b03273 Kanzari F, Asia L, Syakti AD, Piram A, Malleret L, Mille G, Doumenq P (2015) Distribution and risk assessment of hydrocarbons (aliphatic and PAHs), polychlorinated biphenyls (PCBs), and pesticides in surface sediments from an agricultural river (durance) and an industrialized urban lagoon (Berre lagoon), France. Environ Monit Assess 187(9):591. https://doi.org/10.1007/s10661-015-4823-9 Kanzari F, Syakti AD, Asia L, Malleret L, Piram A, Mille G, Doumenq P (2014) Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune). France Sci Total Environ 478:141–151. https://doi.org/10.1016/j.scitotenv.2014.01.065 Katsoyiannis A, Breivik K (2014) Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environ Pollut 184:488–494. https://doi.org/10.1016/j.envpol.2013.09.028 Kim S, Sohn JH, Ha SY, Kang H, Yim UH, Shim WJ, Khim JS, Jung D, Choi K (2016) Thyroid hormone disruption by water-accommodated fractions of crude oil and sediments affected by the Hebei Spirit oil spill in zebrafish and GH3 cells. Environ Sci Technol 50(11):5972–5980. https://doi.org/10.1021/acs.est.6b00751 Lee J, Kalia V, Perera F, Herbstman J, Li T, Nie J, Qu LR, Yu J, Tang D (2017a) Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int 99:315–320. https://doi.org/10.1016/j.envint.2016.12.009 Lee JH, Woo HJ, Jeong KS, Kang JW, Choi JU, Jeong EJ, Park KS, Lee DH (2017b) Spatial distribution of polycyclic aromatic hydrocarbon and polychlorinated biphenyl sources in the Nakdong River estuary. South Korea J Environ Sci Health Part A Toxic Hazard Subst Environ Eng doi 52(12):1173–1183. https://doi.org/10.1080/10934529.2017.1356207 Leitão A, Al-Shaikh I, Hassan H, Ben Hamadou R, Bach S (2017) First genotoxicity assessment of marine environment in Qatar using the local pearl oyster Pinctada Radiata. Reg Stud Mar Sci 11:23–31. https://doi.org/10.1016/j.rsma.2017.02.001 Li C, Huo S, Yu Z, Xi B, Yeager KM, He Z, Ma C, Zhang J, Wu F (2017) National investigation of semi-volatile organic compounds (PAHs, OCPs, and PCBs) in lake sediments of China: occurrence, spatial variation and risk assessment. Sci Total Environ 579:325–336. https://doi.org/10.1016/j.scitotenv.2016.11.097 Lichtfouse É, Derenne S, Mariotti A, Largeau C (1994) Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Org Geochem 22(6):1023–1027. https://doi.org/10.1016/0146-6380(94)90035-3 Liu JL, Zhang J, Liu F, Zhang LL (2014) Polycyclic aromatic hydrocarbons in surface sediment of typical estuaries and the spatial distribution in Haihe river basin. Ecotoxicology 23(4):486–494. https://doi.org/10.1007/s10646-014-1233-7 Liu Y, Beckingham B, Ruegner H, Li Z, Ma L, Schwientek M, Xie H, Zhao J, Grathwohl P (2013) Comparison of sedimentary PAHs in the rivers of ammer (Germany) and liangtan (China): differences between early-and newly-industrialized countries. Environ Sci Technol 47(2):701–709. https://doi.org/10.1021/es3031566 Lou S, Lei B, Feng C, Xu J, Peng W, Wang Y (2016) In vitro toxicity assessment of sediment samples from Huangpu River and Suzhou River, Shanghai, China. Environ Sci Pollut Res 23(15):15183–15192. https://doi.org/10.1007/s11356-016-6683-4 Ma J, Liu H, Tong L, Wang Y, Liu S, Zhao L, Hou L (2017) Source apportionment of polycyclic aromatic hydrocarbons and n-alkanes in the soil-sediment profile of Jianghan oil field, China. Environ Sci Pollut Res 24(15):13344–13351. https://doi.org/10.1007/s11356-017-8913-9 Masood N, Zakaria MP, Halimoon N, Aris AZ, Magam SM, Kannan N, Mustafa S, Ali MM, Keshavarzifard M, Vaezzadeh V, Alkhadher SAA, Al-Odaini NA (2016) Anthropogenic waste indicators (AWIs), particularly PAHs and LABs, in Malaysian sediments: application of aquatic environment for identifying anthropogenic pollution. Mar Pollut Bull 102(1):160–175. https://doi.org/10.1016/j.marpolbul.2015.11.032 Nagy AS, Szabó J, Vass I (2014) Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water and sediments of the Danube River and its tributaries. Hungary J Environ Sci Health Part A Toxic Hazard Subst Environ Eng doi 49(10):1134–1141. https://doi.org/10.1080/10934529.2014.897155 Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300. https://doi.org/10.1016/0273-2300(92)90009-X Ololade IA, Adetiba BO, Oloye FF, Ololade OO, Oladoja NA, Obadawo SB, Anifowose MM, Akinnifesi TA, Akerele D, Alabi AB, Adeola AO (2017) Bioavailability of polycyclic aromatic hydrocarbons (PAHs) and environmental risk (ER) assessment: the case of the Ogbese river. Nigeria Reg Stud Mar Sci 9:9–16. https://doi.org/10.1016/j.rsma.2016.11.004 Pérez-Fernández B, Viñas L, Franco MT, Bargiela J (2015) PAHs in the Ría de Arousa (NW Spain): a consideration of PAHs sources and abundance. Mar Pollut Bull 95(1):155–165. https://doi.org/10.1016/j.marpolbul.2015.04.028 Peters K, and Walters C (2005) Non-biomarker maturity parameters. In: The Biomarker Guide. . In: 2nd ed. (ed) . Cambridge University Press, Cambridge, UK, pp 290–300 Powell TG (1988) Pristane/phytane ratio as environmental indicator. Nature Rahmanpoor S, Ghafourian H, Hashtroudi SM, Bastami KD (2014) Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the Hormuz strait. Persian Gulf Mar Pollut Bull 78(1-2):224–229. https://doi.org/10.1016/j.marpolbul.2013.10.032 Ramzi A, Habeeb Rahman K, Gireeshkumar TR, Balachandran KK, Jacob C, Chandramohanakumar N (2017) Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of cochin estuary. India Mar Pollut Bull 114(2):1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015 Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Shadmehri Toosi A (2017a) Spatial distribution and composition of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and hopanes in superficial sediments of the coral reefs of the Persian Gulf. Iran Environ Pollut 224:195–223. https://doi.org/10.1016/j.envpol.2017.01.080 Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Shadmehri Toosi A (2017b) Comprehensive and comparative ecotoxicological and human risk assessment of polycyclic aromatic hydrocarbons (PAHs) in reef surface sediments and coastal seawaters of Iranian Coral Islands. Persian Gulf Ecotoxicol Environ Saf 145:640–652. https://doi.org/10.1016/j.ecoenv.2017.08.016 Readman J, Fillman G, Tolosa I, Bartocci J, Villeneuve J, Catinni C, Mee L (2002) Petroleum and PAH contamination in the Black Sea. Mar Pollu Bull 44:48–62 Reeves WR, Barhoumi R, Burghardt RC, Lemke SL, Matura K, Mcdonald TJ, Phillips TD, Donnelly KC (2001) Evaluation of methods for predicting the toxicity of polycyclic aromatic hydrocarbon mixtures. Environ Sci Technol 35(8):1630–1636. https://doi.org/10.1021/es001689a Rimayi C, Chimuka L, Odusanya D, de Boer J, Weiss JM (2017) Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei rivers, South Africa. Environ Monit Assess 189(7):327. https://doi.org/10.1007/s10661-017-6043-y Rocha MJ, Dores-Sousa JL, Cruzeiro C, Rocha E (2017) PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal)—impacts on human health. Environ Monit Assess 189(8):425. https://doi.org/10.1007/s10661-017-6137-6 Romero-Oliva CS, Contardo-Jara V, Pflugmacher S (2015) Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum. Egeria densa and Hydrilla verticillata Toxicon 105:62–73. https://doi.org/10.1016/j.toxicon.2015.08.017 Sanil Kumar KS, Nair SM, Salas PM, Prashob Peter KJ, Ratheesh Kumar CS (2016) Aliphatic and polycyclic aromatic hydrocarbon contamination in surface sediment of the Chitrapuzha River. South West India Chem Ecol 32(2):117–135. https://doi.org/10.1080/02757540.2015.1125890 Shirneshan G, Bakhtiari AR, Memariani M (2017) Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Mar Pollut Bull 115(1-2):383–390. https://doi.org/10.1016/j.marpolbul.2016.12.022 Short J, Kvenvolden K, Carlson P, Hostettler F, Rosenbauer R, Wright B (1998) Natural hydrocarbon background in benthic sediments of Prince William sound, Alaska: oil vs coal. Environ Sci Technol 33:34–42 Silva TR, Lopes SRP, Spörl G, Knoppers BA, Azevedo DA (2013) Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine system. Microchem J 109:178–188. https://doi.org/10.1016/j.microc.2012.02.012 Stout SA, Wang Z (2016) Chemical fingerprinting methods and factors affecting petroleum fingerprints in the environment. In: Standard handbook oil spill environmental forensics: fingerprinting and source identification: second edition, pp 61–129. https://doi.org/10.1016/B978-0-12-803832-1.00003-9 Stout SA, Emsbo-Mattingly SD, Douglas GS, Uhler AD, McCarthy KJ (2015) Beyond 16 priority pollutant PAHs: a review of PACs used in environmental forensic chemistry. Polycycl Aromat Compd 35(2-4):285–315. https://doi.org/10.1080/10406638.2014.891144 Su M, Christensen ER, Karls JF, Kosuru S, Imamoglu I (2000) Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model. Environ Toxicol Chem Ten Haven HL, Rullkötter J, De Leeuw JW, Damsté JSS (1988) Pristane/phytane ratio as environmental indicator. Nature Uhler AD, Emsbo-Mattingly S, Liu B, Hall LW Jr, Burton DT (2005) An integrated case study for evaluating the impacts of an oil refinery effluent on aquatic biota in the Delaware River: advanced chemical fingerprinting of PAHs. Hum Ecol Risk Assess 11(4):771–836. https://doi.org/10.1080/10807030591008945 USEPA (U.S. Environmental Protection Agency) (2003a). Implementation. In Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. By David J. Hansen et al. EPA-600-R-02-013, Washington D.C.: Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division USEPA (U.S. Environmental Protection Agency) (2003b) Recommended toxicity equivalence factors (TEFs) for human health risk assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and dioxin-like compounds. In: EPA-600-R-10-005. Risk Assessment Forum, Washington D.C. USEPA (U.S. Environmental Protection Agency) (2013) implementation. In Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. By David J. Hansen et al. EPA-600-R-02-013, Washington D.C.: Office of Research and Development, National Health and environmental effects research laboratory, Atlantic Ecology Division Wagener A, Hamacher C, Farias C, Godoy J, Scofield A (2010) Evaluation of tools to identify hydrocarbon sources in recent and historical sediments of a Tropical Bay. Mar Chem 121:67–79 Wang Z, Yang C, Fingas M, Hollebone B, Yim U, Oh J (2007) Petroleum biomarker fingerprinting for oil spill characterization and source identification. Oil spill environmental forensics: fingerprinting and source identification, 73–146. Elsevier/Academic Press, Amsterdam Wickliffe J, Overton E, Frickel S, Howard J, Wilson M, Simon B, Echsner S, Nguyen D, Gauthe D, Blake D, Miller C, Elferink C, Ansari S, Fernando H, Trapido E, Kane A (2014) Evaluation of polycyclic aromatic hydrocarbons using analytical methods, toxicology, and risk assessment research: seafood safety after a petroleum spill as an example. Environ Health Perspect 122(1):6–9. https://doi.org/10.1289/ehp.1306724 Wilhelms A, Telnæs N, Steen A, Augustson J (1998) A quantitative study of aromatic hydrocarbons in a natural maturity shale sequence—the 3-methylphenanthrene/retene ratio, a pragmatic maturity parameter. Org Geochem 29(1-3):97–105. https://doi.org/10.1016/S0146-6380(98)00112-0 Yu W, Liu R, Xu F, Shen Z (2015) Environmental risk assessments and spatial variations of polycyclic aromatic hydrocarbons in surface sediments in Yangtze River estuary. China Mar Pollut Bull 100(1):507–515. https://doi.org/10.1016/j.marpolbul.2015.09.004 Yuan Y, Song D, Wu W, Liang S, Wang Y, Ren Z (2016) The impact of anthropogenic activities on marine environment in Jiaozhou Bay, Qingdao. China: A review and a case study Reg Stud Mar Sci 8:287–296. https://doi.org/10.1016/j.rsma.2016.01.004 Yunker M, Macdonald R, Vingarzanc R, Mitchell R, Goyette D, Sylvestrec S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515 Yunker MB, Macdonald RW, Ross PS, Johannessen SC, Dangerfield N (2015) Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia. Canada Org Geochem 89-90:80–116. https://doi.org/10.1016/j.orggeochem.2015.10.002 Yunker MB, Perreault A, Lowe CJ (2012) Source apportionment of elevated PAH concentrations in sediments near deep marine outfalls in Esquimalt and Victoria, BC, Canada: is coal from an 1891 shipwreck the source? Org Geochem 46:12–37. https://doi.org/10.1016/j.orggeochem.2012.01.006 Zhang D, Wang J, Ni H, Zeng H (2017a) Spatial-temporal and multi-media variations of polycyclic aromatic hydrocarbons in a highly urbanized river from South China. Sci Total Environ 581-582:621–628. https://doi.org/10.1016/j.scitotenv.2016.12.171 Zhang D, Liu J, Jiang X, Cao K, Yin P, Zhang X (2016) Distribution, sources and ecological risk assessment of PAHs in surface sediments from the Luan River estuary. China Mar Pollut Bull 102(1):223–229. https://doi.org/10.1016/j.marpolbul.2015.10.043 Zhang J, Liu G, Wang R, Huang H (2017b) Polycyclic aromatic hydrocarbons in the water-SPM-sediment system from the middle reaches of Huai River, China: distribution, partitioning, origin tracing and ecological risk assessment. Environ Pollut 230:61–71. https://doi.org/10.1016/j.envpol.2017.06.012