Measuring uncertainty of solvency coverage ratio in ORSA for non-life insurance

European Actuarial Journal - Tập 2 - Trang 205-226 - 2012
Frédéric Planchet1,2, Quentin Guibert2, Marc Juillard2
1Laboratoire SAF, Institut de Science Financière et d’Assurances (ISFA), Université Claude Bernard Lyon 1, Université de Lyon, Lyon Cedex 07, France
2WINTER & Associés, Lyon, France

Tóm tắt

We apply a simple model to project the Solvency Capital Requirement (SCR) over several years, using an Own Risk Solvency Assessment (ORSA) perspective, in order to assess the probability of achieving a solvency coverage ratio. To do so, we rely on a simplified framework proposed in Guibert (Bulletin Français d’Actuariat 10(20), 2010) which provides a detailed explanation of the SCR. Then, we take into account temporal dynamics for liabilities, premiums and asset returns. Here, we consider guarantees in non-life insurance. This context, when simplified, allows us to use a lognormal distribution to approximate the distribution of the liabilities. It leads to a simple and tractable model for measuring the uncertainty of the solvency ratio in an ORSA perspective.

Tài liệu tham khảo

Anderson TW, Darling DA (1954) A test of goodness of fit. JASA 49:765–769 Asmussen S, Albrecher H (2010) Ruin probabilities (second edn). In: Advanced series on statistical science and applied probability, vol 14, World Scientific, Singapore Bera A, Jarque C (1980) Efficient tests for normality, heteroscedasticity and serial independence of regression residuals. Economic Letter 6:255–259 CEIOPS (2010a) Draft proposal for Level 3 Guidelines on Own Risk and Solvency Assessment, Consultation Paper CEIOPS (2010b) QIS5 Technical Specifications, July 2010 Diers D (2009) Strategic management of assets and liabilities using multi-year internal risk models, American Risk and Insurance Association, Meeting Paper Dufresne D (2004) The log-normal approximation in financial and other applications. Adv Appl Prob 36:747–773 El Faouzi NE, Maurin M (2006) Sur la loi de la somme de variables log-normales: application à la fiabilité de temps de parcours routiers, Working Paper, INRETS Fenton LF (1960) The sum of log-normal probability distributions in scattered transmissions systems. IRE Trans Commun Syst 8:57–67 Guibert Q, Juillard M, Planchet F (2010) Un cadre de référence pour un modèle interne partiel en assurance de personnes. Bulletin Français d’Actuariat 10(20) Liebwein P (2006) Risk models for capital adequacy: applications in the context of Solvency II and beyond. Geneva Pap 31:528–550 Planchet F, Juillard M (2010) Le Pilier 2: du calcul de l’exigence de marge au pilotage d’un profil de risqué, la Tribune de l’Assurance (rubrique «le mot de l’actuaire») (153), 01/12/2010 R Development Core Team (2011) R: A Language and Environment for Statistical Computting, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Robert CY (2011) Market value margin calculations under the cost of capital approach within a Bayesian chain ladder framework, ISFA, Working Paper Saporta G (1990) Probabilités, analyse des données et statistique, Technip Schwartz S (1982) On the distribution function and moments of power sums of with log-normal components. Bell Syst Tech J 61:1441–1462