Insight into influence of conducting polymer functionalized graphene on electromechanical activity of polyurethane-based intelligent shape-changing composites
Tóm tắt
Conducting polymer noncovalent functionalized graphene sheets were introduced into polyurethane (PU) dielectric elastomer matrix to obtain intelligent shape-changing polymer composites with high dielectric constant, low dielectric loss, low loss modulus, low loss tangent and large electric field induced thickness strain. Polyaniline and polypyrrole functionalized graphene (PANI-RGO and PPY-RGO) nanosheets were prepared by in situ polymerization of PANI and PPY upon graphene. The results indicated that the dielectric constant at 1 kHz was obviously increased from 4.5 for pure PU to 183 and 248 for the composite with 3.0 wt% PANI-RGO and 3.0 wt% PPY-RGO, respectively. Meanwhile, the dielectric loss retained a low value (below 0.25) for all the composites. In addition, a significant increase in electric field induced thickness strain was obtained from 27 % for pure PU to 68 and 93 % with the addition of 3.0 wt% PANI-RGO and PPY-RGO under a low electric field (37.5 V/μm). Our work provided a simple and effective method to prepare high performance PU dielectric elastomer composites, facilitating the wide application in the micro-electro-mechanical system fields such as mirco-sensors, and micro-actuators.
Tài liệu tham khảo
R. Perline, R. Kohrnbluh, Q.B. Pei, J. Joseph, Science 287, 836–839 (2000)
F. Carpi, S. Bauer, D.D. Rossi, Science 330, 1759–1761 (2010)
J. Biggs, K. Danielmeier, J. Hitzbleck, J. Krause, T. Kridl, S. Nowak et al., Angew. Chem. Int. Ed. 52, 9409–9421 (2013)
R. Shankar, T.K. Ghosh, R.J. Spontak, Soft Matter 3, 1116–1129 (2007)
P. Brochu, Q.B. Pei, Macromol. Rapid Commun. 31, 10–36 (2010)
L.Z. Chen, C. Liu, C. Hu, S. Fan, Appl. Phys. Lett. 92, 263104 (2008)
M. Molberg, Y. Leterrier, C.J. Plummer, C. Walder, C. Lowe, D.M. Opris et al., J. Appl. Phys. 106, 054112 (2009)
R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q.B. Pei, S. Chiba, Mater. Sci. Eng. C 11, 89–100 (2000)
W. Hu, N.F. Zhang, X.F. Niu, C. Liu, Q.B. Pei, J. Mater. Chem. C 2, 1658–1666 (2014)
C. Keplinger, T.F. Li, R. Baumgartner, Z.G. Suo, S. Bauer, Soft Matter 8, 285–288 (2012)
Y.J. Jang, T. Hirai, T. Ueki, T. Kato, Polym. Int. 61, 228–234 (2012)
D. Yang, L.Q. Zhang, H.L. Liu, Y.C. Dong, Y.C. Yu, M. Tian, J. Appl. Polym. Sci. 125, 2196–2201 (2012)
D.M. Opris, M. Molberg, C. Walder, Y.S. Ko, B. Fischer, F.A. Nüesch, Adv. Funct. Mater. 21, 3531–3539 (2011)
S. Risse, B. Kussmaul, H. Krüger, G. Kofod, Adv. Funct. Mater. 22, 3958–3962 (2012)
M. Tian, Z.Y. Wei, X.Q. Zan, L.Q. Zhang, J. Zhang, Q. Ma et al., Compos. Sci. Technol. 99, 37–44 (2014)
C. Huang, Q.M. Zhang, G. Botton, K. Bhattacharya, Appl. Phys. Lett. 84, 4391–4393 (2004)
K. Wongtimnoi, B. Guiffard, A.B.V. Moortèle, L. Seveyrat, C. Gauthier et al., Compos. Sci. Technol. 71, 885–892 (2011)
K. Wongtimnoi, B. Guiffard, A.B.V. Moortèle, L. Seveyrat, J.Y. Cavaillé, Compos. Sci. Technol. 85, 23–28 (2013)
T. Chen, J.H. Qiu, K.J. Zhu, X.Y. He, X. Kang, E.L. Dong, Mater. Lett. 128, 19–22 (2014)
D.H. Suo, C.C. Chang, T.Y. Su, W.K. Wang, B.Y. Lin, J. Eur. Ceram. Soc. 21, 1171–1177 (2001)
G.M. Joshi, S.M. Khatake, S. Kaleemulla, N.M. Rao, T. Cuberes, Curr. Appl. Phys. 11, 1322–1325 (2011)
S. Zhang, N. Zhang, C. Huang, K. Ren, Q.M. Zhang, Adv. Mater. 17, 1897–1901 (2005)
P. Potschke, S.M. Dudkin, I. Alig, Polymer 44, 5023–5030 (2003)
R.R. Kohlmeyer, A. Javadi, B. Pradhan, S. Pilla, K. Setyowati, J. Chen et al., J. Phys. Chem. C 113, 17626–17629 (2009)
S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009)
R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638–670 (2011)
A. Javadi, Y.L. Xiao, W.J. Xu, S.Q. Gong, J. Mater. Chem. 22, 830–834 (2012)
W.P.S. Saw, M. Mariatti, J. Mater. Sci. Mater. Electron. 23, 817–824 (2012)
M.A. Raza, A.V.K. Westwood, A.P. Brown, C. Stirling, J. Mater. Sci. Mater. Electron. 23, 1855–1863 (2012)
Y.Y. Zhang, S.L. Jiang, M.Y. Fan, Y.K. Zeng, Y. Yu, J.G. He, J. Mater. Sci. Mater. Electron. 24, 927–932 (2013)
J.Y. Kim, W.H. Lee, J.W. Suk, J.R. Potts, H. Chou, I.N. Kholmanov et al., Adv. Mater. 25, 2308–2313 (2013)
V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp et al., Chem. Rev. 112, 6156–6214 (2012)
T. Ahuja, I.A. Mir, D. Kumar, A. Rajesh, Biomaterials 28, 791–805 (2007)
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia et al., Carbon 45, 1558–1565 (2007)
T. Chen, J.H. Qiu, K.J. Zhu, J.H. Li, J.W. Wang, S.Q. Li et al., RSC Adv. 4, 64061–64067 (2014)
J.H. Wu, Q.W. Tang, Q.H. Li, J.M. Lin, Polymer 49, 5262–5267 (2008)
C.Z. Zhu, J.F. Zhai, D. Wen, S.J. Dong, J. Mater. Chem. 22, 6300–6306 (2012)
Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao, W. Quan et al., Sens. Actuators B 178, 485–493 (2013)
Z.H. Luo, L.H. Zhu, Y.F. Huang, H.Q. Tang, Synth. Met. 175, 88–96 (2013)
Y.S. Gao, J.K. Xu, L.M. Lu, L.P. Wu, K.X. Zhang, T. Nie et al., Biosens. Bioelectron. 62, 261–267 (2014)
Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Adv. Mater. 19, 852–857 (2007)
H.Y. Mi, Z. Li, L.S. Turng, Y.G. Sun, S.Q. Gong, Mater. Des. 56, 398–404 (2014)
R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Polymer 51, 5846–5856 (2010)