Multi-class particle swarm model selection for automatic image annotation
Tài liệu tham khảo
Barnard, 2007, Matching words with pictures, Journal of Machine Learning Research., 3, 1107
Bishop, 2006
Bradshaw, B. (2000). Semantic based image retrieval: a probabilistic approach. In: Proc. of the 8th ACM international conference on multimedia (pp. 167–176). California, USA
Carbonetto, P. (2003). Unsupervised statistical models for general object recognition, M.S. thesis, University of British Columbia.
Carbonetto, P., de Freitas, N., & Barnard, K. (2004). A statistical model for general context object recognition. In: Proc. of the 8th european conference on computer vision (LNCS Vol. 3021, pp. 350–362). Springer, Prague, Czech Republic.
Datta, 2008, Image retrieval: ideas, influences, and trends of the new age, ACM Computing Surveys, 40, 1, 10.1145/1348246.1348248
de Souza, B.F., de Carvalho, A., Calvo, R.,& Ishii, P. (2006). Multiclass SVM model selection using particle swarm model selection. In: Proc. of the 6th international conference on hybrid intelligent systems (pp. 31–35). Rio De Janeiro, Brazil.
Engelbrecht, 2006
Escalante, H.J., Montes, M., & Sucar, E. (2007). PSMS for neural networks in the IJCNN 2007 ALvsPK. In: Proc. of 20th international joint conference on neural networks (pp. 1191–1197). Orlando, FL, USA.
Escalante, H. J., Montes, M., & Sucar, L. E. (2007). Word co-occurrence and Markov random fields for improving automatic image annotation. In: Proc. of the 18th British machine vision conference (Vol. 2, pp. 600–609), Warwick, UK.
Escalante, 2009, Particle swarm model selection, Journal of Machine Learning Research, 10, 405
Fergus, R., Fei-Fei, L., Perona, P., & Zisserman, A. (2005). Learning object categories from Googles image search. In: Proc. of the 10th international conference on computer vision (pp. 1816–1823). Beijing, China.
Ghoshal, A., Ircing, P., & Khudanpur, S. (2005). Hidden Markov Models for automatic annotation and content-based retrieval of images and video. In: Proc. of the 28th international ACM-SIGIR conference on research and development in information retrieval (pp. 544–551). Salvador, Brazil.
Guyon, 2011, Vol. 1
Guyon, I., Saffari, A., Dror, G., & Cawley, G. (2007). Agnostic learning vs prior knowledge challenge. In: Proc. of 20th international joint conference on neural networks (pp. 1232–1238). Orlando, FL, USA.
Hernandez, 2007, Markov random fields and spatial information to improve automatic image annotation, Vol. 4872, 879
Jeon, J., Lavrenko, V., & Manmatha, R. (2003). Automatic image annotation and retrieval using cross-media relevance models. In: Proc. of the 26th international ACM-SIGIR conference on research and development on information retrieval (pp. 119–126). Toronto, Canada.
Kennedy, 2001
Laserre, J., Bishop, C., & Minka, T. (2006). Principled hybrids on discriminative and generative models. In: Proc. of the conference on computer vision and pattern recognition (pp. 87–94). New York, USA.
Liu, 2007, A survey of content-based image retrieval with high-level semantics, Pattern Recognition, 40, 262, 10.1016/j.patcog.2006.04.045
Rifkin, 2004, In defense of one-vs-all classification, Journal of Machine Learning Research, 5, 101
Saffari, A., & Guyon, I. (2006). Quickstart Guide for CLOP, Tech. rep., Graz University of Technology and Clopinet, Graz, Austria.
Shi, 2000, Normalized Cuts and Image Segmentation, IEEE Trans. on PAMI, 22, 888, 10.1109/34.868688
Szummer, M., & Picard, R. (1998). Indoor–outdoor image classification. In: it Proc. of the workshop on content-based access to image and video databases (pp. 42). Washington, DC, USA.
Vailaya, 1998, On image classification: city versus landscape, Pattern Recognition, 31, 1921, 10.1016/S0031-3203(98)00079-X
van den Bergh, F. 2001. An analysis of particle swarm optimizers. PhD thesis, University of Pretoria, Sudafrica.
Winn, J., Criminisi, A., & Minka, T. (2005). Object categorization by learned universal visual dictionary. In: Proc. of the 10th international conference on computer vision (pp. 1800–1807). Beijing, China.