Predicting the Potential Distribution of Perennial Plant Coptis chinensis Franch. in China under Multiple Climate Change Scenarios

Forests - Tập 12 Số 11 - Trang 1464
Qian Zhao1,2, Yuan Zhang1, Wen-Na Li1,2, HU Bang-wen3, Jiabin Zou1, Shiqiang Wang1,2, Junfeng Niu1,2, Zhezhi Wang1,2
1College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
2National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, The Ministry of Education, Xi’an 710119, China
3Zhenping County Agricultural Science and Technology Research Institute, Ankang 725600, China

Tóm tắt

Coptis chinensis Franch. (Ranales: Ranunculaceae) is a perennial species with high medicinal value. Predicting the potentially geographical distribution patterns of C. chinensis against the background of climate change can facilitate its protection and sustainable utilization. This study employed the optimized maximum entropy model to predict the distribution patterns and changes in potentially suitable C. chinensis’ regions in China under multiple climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) across different time periods (1970–2000, 2050s, 2070s, and 2090s). The results revealed that the currently potentially suitable regions of C. chinensis span an area of 120.47 × 104 km2, which accounts for 12.54% of China’s territory. Among these areas, the low, moderate, and highly suitable regions are 80.10 × 104 km2, 37.16 × 104 km2, and 3.21 × 104 km2, respectively. The highly suitable regions are primarily distributed in Chongqing, Guizhou, Zhejiang, Hubei, and Hunan Provinces. Over time, the potentially suitable regions of C. chinensis are predicted to shrink. Furthermore, our study revealed that the relatively low impact areas of C. chinensis were mainly distributed in Yunnan, Guizhou, Hubei, Chongqing, and other Provinces. Centroid transfer analysis indicated that except for SSP1-2.6, the center of the potentially suitable region of C. chinensis showed a trend of gradual transfer to the northwest and high-altitude areas.

Từ khóa


Tài liệu tham khảo

Yang, 2021, Spatio-temporal variation in potential habitats for rare and endangered plants and habitat conservation based on the maximum entropy model, Sci. Total Environ., 784, 147080, 10.1016/j.scitotenv.2021.147080

Ye, X.-Z., Zhao, G.-H., Zhang, M.-Z., Cui, X.-Y., Fan, H.-H., and Liu, B. (2020). Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forests, 11.

Qin, 2017, Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China, Glob. Ecol. Conserv., 10, 139

Wu, Y.-M., Shen, X.-L., Tong, L., Lei, F.-W., Mu, X.-Y., and Zhang, Z.-X. (2021). Impact of past and future climate change on the potential distribution of an endangered montane shrub Lonicera oblata and its conservation implications. Forests, 12.

Hu, 2010, Predicting the potential distribution of the endangered Przewalski’s gazelle, J. Zool., 282, 54, 10.1111/j.1469-7998.2010.00715.x

Xu, W., Sun, H., Jin, J., and Cheng, J. (2020). Predicting the potential distribution of apple canker pathogen (Valsa mali) in China under climate change. Forests, 11.

Feng, L., Sun, J., Shi, Y., Wang, G., and Wang, T. (2020). Predicting suitable habitats of Camptotheca acuminata considering both climatic and soil variables. Forests, 11.

Santos-Hernández, A.F., Monterroso-Rivas, A.I., Granados-Sánchez, D., Villanueva-Morales, A., and Santacruz-Carrillo, M. (2021). Projections for Mexico’s tropical rainforests considering ecological niche and climate change. Forests, 12.

Zhang, K., Sun, L., and Tao, J. (2020). Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees. Forests, 11.

Xu, 2019, Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling, Glob. Ecol. Conserv., 19, e00691

Wei, J., Li, X., Lu, Y., Zhao, L., Zhang, H., and Zhao, Q. (2019). Modeling the potential global distribution of Phenacoccus madeirensis Green under various climate change scenarios. Forests, 10.

Sarafrazi, 2013, Predicting habitat distribution of five heteropteran pest species in Iran, J. Insect Sci., 13, 116

Peterman, 2013, Using species distribution and occupancy modeling to guide survey efforts and assess species status, J. Nat. Conserv., 21, 114, 10.1016/j.jnc.2012.11.005

Guisan, 2005, Predicting species distribution: Offering more than simple habitat models, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x

Zhao, 2018, Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS), Mol. Phylogenet. Evol., 126, 250, 10.1016/j.ympev.2018.04.014

Pecchi, 2019, Species distribution modelling to support forest management. A literature review, Ecol. Model., 411, 108817, 10.1016/j.ecolmodel.2019.108817

Title, 2018, ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling, Ecography, 41, 291, 10.1111/ecog.02880

Sony, 2018, Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India, Ecol. Eng., 120, 355, 10.1016/j.ecoleng.2018.06.017

Hoban, 2018, Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity, Mol. Ecol. Resour., 18, 14, 10.1111/1755-0998.12752

Elith, 2009, Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 40, 677, 10.1146/annurev.ecolsys.110308.120159

Zhang, K., Zhang, Y., and Tao, J. (2019). Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a maxent model. Forests, 10.

Yang, 2013, Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills, Ecol. Eng., 51, 83, 10.1016/j.ecoleng.2012.12.004

Kumar, 2009, Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia, J. Ecol. Nat. Environ., 1, 94

Alami, M.M., Xue, J., Ma, Y., Zhu, D., Abbas, A., Gong, Z., and Wang, X. (2020). Structure, function, diversity, and composition of fungal communities in rhizospheric soil of Coptis chinensis Franch under a successive cropping system. Plants, 9.

Wu, 2019, Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review, J. Cell. Mol. Med., 23, 7946, 10.1111/jcmm.14725

He, 2017, Complete chloroplast genome sequence of Coptis chinensis Franch. and its evolutionary history, Biomed Res. Int., 2017, 8201836, 10.1155/2017/8201836

Pei, 2019, Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis, Int. J. Nanomed., 14, 1969, 10.2147/IJN.S188235

Miao, 2021, An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms, J. Ethnopharmacol., 268, 113666, 10.1016/j.jep.2020.113666

Liu, 2021, Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids, Nat. Commun., 12, 3276, 10.1038/s41467-021-23611-0

Chen, 2021, The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis, Hortic. Res., 8, 121, 10.1038/s41438-021-00559-2

Li, J., Meng, X., Wang, C., Zhang, H., Chen, H., Deng, P., Liu, J., Huandike, M., Wei, J., and Chai, L. (2020). Coptidis alkaloids extracted from Coptis chinensis Franch attenuate IFN-gamma-induced destruction of bone marrow cells. PLoS ONE, 15.

Yang, S.B., Kim, E.H., Kim, S.H., Kim, Y.H., Oh, W., Lee, J.T., Jang, Y.A., Sabina, Y., Ji, B.C., and Yeum, J.H. (2018). Electrospinning fabrication of poly(vinyl alcohol)/Coptis chinensis extract nanofibers for antimicrobial exploits. Nanomaterials, 8.

Azareh, 2019, Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models, Sci. Total Environ., 655, 684, 10.1016/j.scitotenv.2018.11.235

Wang, 2019, Moving north in China: The habitat of Pedicularis kansuensis in the context of climate change, Sci. Total. Environ., 697, 133979, 10.1016/j.scitotenv.2019.133979

Poirazidis, 2019, Bioclimatic and environmental suitability models for capercaillie (Tetrao urogallus) conservation: Identification of optimal and marginal areas in Rodopi Mountain-Range National Park (Northern Greece), Glob. Ecol. Conserv., 17, e00526

Yan, 2020, Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt, Glob. Ecol. Conserv., 21, e00856

Shcheglovitova, 2013, Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes, Ecol. Model., 269, 9, 10.1016/j.ecolmodel.2013.08.011

Wei, 2021, Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation, Sci. Total Environ., 755, 142548, 10.1016/j.scitotenv.2020.142548

Phillips, 2017, Opening the black box: An open-source release of Maxent, Ecography, 40, 887, 10.1111/ecog.03049

Yan, 2020, Predicting the potential distribution of an invasive species, Erigeron canadensis L., in China with a maximum entropy model, Glob. Ecol. Conserv., 21, e00822

Sun, 2020, The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China, Sci. Total Environ., 744, 140786, 10.1016/j.scitotenv.2020.140786

Cobos, 2019, kuenm: An R package for detailed development of ecological niche models using Maxent, PeerJ, 7, e6281, 10.7717/peerj.6281

Goncalves, 2020, Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain, Sci. Total Environ., 709, 136161, 10.1016/j.scitotenv.2019.136161

Akpoti, 2020, Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling, Sci. Total Environ., 709, 136165, 10.1016/j.scitotenv.2019.136165

Liu, 2019, Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China, Sci. Total Environ., 664, 203, 10.1016/j.scitotenv.2019.01.301

Guo, 2019, Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China, Sci. Total Environ., 648, 1, 10.1016/j.scitotenv.2018.07.465

Tang, 2018, Identifying long-term stable refugia for relict plant species in East Asia, Nat. Commun., 9, 4488, 10.1038/s41467-018-06837-3

Ye, 2018, Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains, Sci. Total Environ., 612, 775, 10.1016/j.scitotenv.2017.08.191

Pan, J., Fan, X., Luo, S., Zhang, Y., Yao, S., Guo, Q., and Qian, Z. (2020). Predicting the potential distribution of two varieties of Litsea coreana (leopard-skin camphor) in China under climate change. Forests, 11.

Zurell, 2020, A standard protocol for reporting species distribution models, Ecography, 43, 1261, 10.1111/ecog.04960

Brown, 2017, SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, PeerJ, 5, e4095, 10.7717/peerj.4095

Brown, 2014, SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Methods Ecol. Evol., 5, 694, 10.1111/2041-210X.12200

Meentemeyer, 2009, Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?, Ecol. Model., 220, 3248, 10.1016/j.ecolmodel.2009.08.013

Smith, 2019, Niche estimation above and below the species level, Trends Ecol. Evol., 34, 260, 10.1016/j.tree.2018.10.012

Guo, 2019, Predicting growth and habitat responses of Ginkgo biloba L. to climate change, Ann. Forest Sci., 76, 101, 10.1007/s13595-019-0885-0

Wang, 2017, The implications of fossil fuel supply constraints on climate change projections: A supply-side analysis, Futures, 86, 58, 10.1016/j.futures.2016.04.007

Li, 2020, Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis, Sci. Total Environ., 698, 134141, 10.1016/j.scitotenv.2019.134141

Puchalka, 2021, Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate, Glob. Chang. Biol., 27, 1587, 10.1111/gcb.15486

Tseng, 2020, Effect of Coptis chinensis on biofilm formation and antibiotic susceptibility in Mycobacterium abscessus, Evid-Based Compl. Alt., 2020, 9754357, 10.1155/2020/9754357

Salaman, 2013, Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia, Reg. Environ. Change, 13, 235, 10.1007/s10113-012-0329-y

Record, 2013, Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change, Global Ecol. Biogeogr., 22, 760, 10.1111/geb.12017

Maiorano, 2013, Building the niche through time: Using 13,000 years of data to predict the effects of climate change on three tree species in Europe, Global Ecol. Biogeogr., 22, 302, 10.1111/j.1466-8238.2012.00767.x

Li, 2013, Vulnerability of 208 endemic or endangered species in China to the effects of climate change, Reg. Environ. Change, 13, 843, 10.1007/s10113-012-0344-z

Blank, 2012, Using ecological niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites, Hydrobiologia, 693, 157, 10.1007/s10750-012-1101-5

Lee, 2018, Fractionated Coptis chinensis extract and its bioactive component suppress Propionibacterium acnes-stimulated inflammation in human keratinocytes, J. Microbiol. Biotechnol., 28, 839, 10.4014/jmb.1712.12051

Jung, 2014, Inhibitory Activities of palmatine from Coptis chinensis against Helicobactor pylori and gastric damage, Toxicol. Res., 30, 45, 10.5487/TR.2014.30.1.045

Friedemann, 2014, Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells, J. Ethnopharmacol., 155, 607, 10.1016/j.jep.2014.06.004

Yu, 2011, Preparative separation of quaternary ammonium alkaloids from Coptis chinensis Franch by pH-zone-refining counter-current chromatography, J. Sep. Sci., 34, 278, 10.1002/jssc.201000749

Yuan, 2006, Hypoglycemic and hypocholesterolemic effects of Coptis chinensis Franch inflorescence, Plant Food. Hum. Nutr., 61, 139, 10.1007/s11130-006-0023-7

Luoto, 2007, The importance of biotic interactions for modelling species distributions under climate change, Global Ecol. Biogeogr., 16, 743, 10.1111/j.1466-8238.2007.00359.x

Pearson, 2005, Validation of species–climate impact models under climate change, Glob. Chang. Biol., 11, 1504, 10.1111/j.1365-2486.2005.01000.x

Zavala, 2013, Chasing a moving target: Projecting climate change-induced shifts in non-equilibrial tree species distributions, J. Ecol., 101, 441, 10.1111/1365-2745.12049

Zeng, 2016, Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish, Ecol. Model., 341, 5, 10.1016/j.ecolmodel.2016.09.019