Shelter from the cytokine storm: pitfalls and prospects in the development of SARS-CoV-2 vaccines for an elderly population

Springer Science and Business Media LLC - Tập 42 - Trang 619-634 - 2020
Annalisa Ciabattini1, Paolo Garagnani2,3,4, Francesco Santoro1, Rino Rappuoli5,6,7, Claudio Franceschi8, Donata Medaglini1
1Laboratory of Molecular Microbiology and Biotechnology (LA.M.M.B.), Department of Medical Biotechnologies, University of Siena, Siena, Italy
2Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute at Huddinge University Hospital, Stockholm, Sweden
3Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
4Interdepartmental Centre ‘L. Galvan’ (CIG), University of Bologna, Bologna, Italy
5GSK, Siena, Italy
6vAMRes Lab, Toscana Life Sciences, Siena, Italy
7Faculty of Medicine, Imperial College, London, UK
8Lobachevsky State University, Nizhny Novgorod, Russia

Tóm tắt

The SARS-CoV-2 pandemic urgently calls for the development of effective preventive tools. COVID-19 hits greatly the elder and more fragile fraction of the population boosting the evergreen issue of the vaccination of older people. The development of a vaccine against SARS-CoV-2 tailored for the elderly population faces the challenge of the poor immune responsiveness of the older population due to immunosenescence, comorbidities, and pharmacological treatments. Moreover, it is likely that the inflammaging phenotype associated with age could both influence vaccination efficacy and exacerbate the risk of COVID-19-related “cytokine storm syndrome” with an overlap between the factors which impact vaccination effectiveness and those that boost virulence and worsen the prognosis of SARS-CoV-2 infection. The complex and still unclear immunopathological mechanisms of SARS-CoV-2 infection, together with the progressive age-related decline of immune responses, and the lack of clear correlates of protection, make the design of vaccination strategies for older people extremely challenging. In the ongoing effort in vaccine development, different SARS-CoV-2 vaccine candidates have been developed, tested in pre-clinical and clinical studies and are undergoing clinical testing, but only a small fraction of these are currently being tested in the older fraction of the population. Recent advances in systems biology integrating clinical, immunologic, and omics data can help to identify stable and robust markers of vaccine response and move towards a better understanding of SARS-CoV-2 vaccine responses in the elderly.

Tài liệu tham khảo

Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NM (2020) Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis 20:669–677. https://doi.org/10.1016/S1473-3099(20)30243-7 Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat. Rev. Immunol. 16:626–638. https://doi.org/10.1038/nri.2016.90 Vom Steeg LG, Klein SL (2016) SeXX matters in infectious disease pathogenesis. PLoS Pathog 12:e1005374. https://doi.org/10.1371/journal.ppat.1005374 Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, Xiong W, Yang D, Chen R, Lu F, Lu Y, Liu X, Chen Y, Li X, Li Y, Summah HD, Lin H, Yan J, Zhou M, Lu H, Qu J (2020) COVID-19 with different severities: a multicenter study of clinical features. Am J Respir Crit Care Med 201:1380–1388. https://doi.org/10.1164/rccm.202002-0445OC Rastad H, Karim H, Ejtahed H-S, Tajbakhsh R, Noorisepehr M, Babaei M, Azimzadeh M, Soleimani A, Inanloo SH, Shafiabadi Hassani N, Rasanezhad F, Shahrestanaki E, Khodaparast Z, Golami H, Qorbani M (2020) Risk and predictors of in-hospital mortality from COVID-19 in patients with diabetes and cardiovascular disease. Diabetol Metab Syndr 12:57. https://doi.org/10.1186/s13098-020-00565-9 Jain V, Yuan J-M (2020) Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. Public Health, Int. J. https://doi.org/10.1007/s00038-020-01390-7 Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, Curtis HJ, Mehrkar A, Evans D, Inglesby P, Cockburn J, McDonald HI, MacKenna B, Tomlinson L, Douglas IJ, Rentsch CT, Mathur R, Wong AYS, Grieve R, Harrison D, Forbes H, Schultze A, Croker R, Parry J, Hester F, Harper S, Perera R, Evans SJW, Smeeth L, Goldacre B (2020) OpenSAFELY: factors associated with COVID-19 death in 17 million patients. Nature 584:1–11. https://doi.org/10.1038/s41586-020-2521-4 Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x Jose RJ, Manuel A (2020) COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir, Med. https://doi.org/10.1016/S2213-2600(20)30216-2 Koff WC, Williams MA (2020) Covid-19 and immunity in aging populations - a new research agenda. N Engl J Med 383:804–805. https://doi.org/10.1056/NEJMp2006761 Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2017) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960. https://doi.org/10.3389/fimmu.2017.01960 Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 117:57–68. https://doi.org/10.1016/s0047-6374(00)00137-8 Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M (2017) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on Inflammaging and trained immunity. Front Immunol 8:982. https://doi.org/10.3389/fimmu.2017.00982 Akbar AN, Henson SM, Lanna A (2016) Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol 37:866–876. https://doi.org/10.1016/j.it.2016.09.002 Johnson SA, Cambier JC (2004) Ageing, autoimmunity and arthritis: senescence of the B cell compartment – implications for humoral immunity. Arthritis Res Ther 6:131–139. https://doi.org/10.1186/ar1180 Schmitt V, Rink L, Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48:1379–1386. https://doi.org/10.1016/j.exger.2013.09.003 Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi C, Passeri M, Sansoni P (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood. 95:2860–2868 Goronzy JJ, Weyand CM (2017) Successful and maladaptive T cell aging. Immunity. 46:364–378. https://doi.org/10.1016/j.immuni.2017.03.010 Thomas R, Wang W, Su DM (2020) Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing 17. https://doi.org/10.1186/s12979-020-0173-8 Wack A, Cossarizza A, Heltai S, Barbieri D, D’Addato S, Fransceschi C, Dellabona P, Casorati G (1998) Age-related modifications of the human alphabeta T cell repertoire due to different clonal expansions in the CD4+ and CD8+ subsets. Int Immunol 10:1281–1288. https://doi.org/10.1093/intimm/10.9.1281 Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H (2016) Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front Immunol 7:502. https://doi.org/10.3389/fimmu.2016.00502 Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139. https://doi.org/10.1038/ni1033 Tu W, Rao S (2016) Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front. Microbiol 7. https://doi.org/10.3389/fmicb.2016.02111 Vescovini R, Telera A, Fagnoni FF, Biasini C, Medici MC, Valcavi P, di Pede P, Lucchini G, Zanlari L, Passeri G, Zanni F, Chezzi C, Franceschi C, Sansoni P (2004) Different contribution of EBV and CMV infections in very long-term carriers to age-related alterations of CD8+ T cells. Exp Gerontol 39:1233–1243. https://doi.org/10.1016/j.exger.2004.04.004 Bektas A, Schurman SH, Sen R, Ferrucci L (2017) Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102:977–988. https://doi.org/10.1189/jlb.3RI0716-335R Pangrazzi L, Weinberger B (2020) T cells, aging and senescence. Exp Gerontol 134:110887. https://doi.org/10.1016/j.exger.2020.110887 Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V (2011) Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143. https://doi.org/10.1038/ni.1979 Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, Clementz MA, Banach BS, Li K, Baker SC, Chen Z (2012) Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0030802 Sun B, Sundström KB, Chew JJ, Bist P, Gan ES, Tan HC, Goh KC, Chawla T, Tang CK, Ooi EE (2017) Dengue virus activates cGAS through the release of mitochondrial DNA. Sci Rep 7:3594. https://doi.org/10.1038/s41598-017-03932-1 Prompetchara E, Ketloy C, Palaga T (2020) Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol 38:1–9. https://doi.org/10.12932/AP-200220-0772 Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB, Meyerholz DK, Perlman S (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 129:3625–3639. https://doi.org/10.1172/JCI126363 Rockx B, Baas T, Zornetzer GA, Haagmans B, Sheahan T, Frieman M, Dyer MD, Teal TH, Proll S, van den Brand J, Baric R, Katze MG (2009) Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol 83:7062–7074. https://doi.org/10.1128/JVI.00127-09 Huang K-J, Su I-J, Theron M, Wu Y-C, Lai S-K, Liu C-C, Lei H-Y (2005) An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75:185–194. https://doi.org/10.1002/jmv.20255 Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, Bonten M (2020) Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 181:969–977. https://doi.org/10.1016/j.cell.2020.04.042 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet Lond Engl 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, Bonanomi E, D’Antiga L (2020) An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395:1771–1778. https://doi.org/10.1016/S0140-6736(20)31103-X C.G. Casas, A. Català, G.C. Hernández, P. Rodríguez-Jiménez, D. Fernández-Nieto, A.R.-V. Lario, I.N. Fernández, R. Ruiz-Villaverde, D. Falkenhain-López, M.L. Velasco, J. García-Gavín, O. Baniandrés, C. González-Cruz, V. Morillas-Lahuerta, X. Cubiró, I.F. Nart, G. Selda-Enriquez, J. Romaní, X. Fustà-Novell, A. Melian-Olivera, M.R. Riesco, P. Burgos-Blasco, J.S. Ortigosa, M.F. Rodriguez, I. García-Doval, Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases, Br. J. Dermatol. n/a (n.d.). https://doi.org/10.1111/bjd.19163 Smits SL, de Lang A, van den Brand JMA, Leijten LM, van IJcken WF, Eijkemans MJC, van Amerongen G, Kuiken T, Andeweg AC, Osterhaus ADME, Haagmans BL (2010) Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog 6. https://doi.org/10.1371/journal.ppat.1000756 D. Blanco-Melo, B.E. Nilsson-Payant, W.-C. Liu, S. Uhl, D. Hoagland, R. Møller, T.X. Jordan, K. Oishi, M. Panis, D. Sachs, T.T. Wang, R.E. Schwartz, J.K. Lim, R.A. Albrecht, B.R. tenOever, Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell. 181 (2020) 1036–1045.e9. https://doi.org/10.1016/j.cell.2020.04.026 Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X, Cao B (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 395:1517–1520. https://doi.org/10.1016/S0140-6736(20)30920-X Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP (2020) The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 20:363–374. https://doi.org/10.1038/s41577-020-0311-8 Li S, Jiang L, Li X, Lin F, Wang Y, Li B, Jiang T, An W, Liu S, Liu H, Xu P, Zhao L, Zhang L, Mu J, Wang H, Kang J, Li Y, Huang L, Zhu C, Zhao S, Lu J, Ji J, Zhao J (2020) Clinical and pathological investigation of patients with severe COVID-19. JCI Insight 5. https://doi.org/10.1172/jci.insight.138070 Liu J, Li S, Liu J, Liang B, Wang X, Wang H, Li W, Tong Q, Yi J, Zhao L, Xiong L, Guo C, Tian J, Luo J, Yao J, Pang R, Shen H, Peng C, Liu T, Zhang Q, Wu J, Xu L, Lu S, Wang B, Weng Z, Han C, Zhu H, Zhou R, Zhou H, Chen X, Ye P, Zhu B, Wang L, Zhou W, He S, He Y, Jie S, Wei P, Zhang J, Lu Y, Wang W, Zhang L, Li L, Zhou F, Wang J, Dittmer U, Lu M, Hu Y, Yang D, Zheng X (2020) Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55:102763. https://doi.org/10.1016/j.ebiom.2020.102763 Liu X, Zhang R, He G (2020) Hematological findings in coronavirus disease 2019: indications of progression of disease. Ann Hematol 99:1421–1428. https://doi.org/10.1007/s00277-020-04103-5 Iwasaki A, Yang Y (2020) The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20:339–341. https://doi.org/10.1038/s41577-020-0321-6 Jylhävä J, Pedersen NL, Hägg S (2017) Biological age predictors. EBioMedicine. 21:29–36. https://doi.org/10.1016/j.ebiom.2017.03.046 Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med 5. https://doi.org/10.3389/fmed.2018.00061 Gensous N, Franceschi C, Blomberg BB, Pirazzini C, Ravaioli F, Gentilini D, Di Blasio AM, Garagnani P, Frasca D, Bacalini MG (2018) Responders and non-responders to influenza vaccination: a DNA methylation approach on blood cells. Exp Gerontol 105:94–100. https://doi.org/10.1016/j.exger.2018.01.019 Pawelec G (2017) Does the human immune system ever really become “senescent”? F1000Research 6. https://doi.org/10.12688/f1000research.11297.1 Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A (2020) Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 323:1574–1581. https://doi.org/10.1001/jama.2020.5394 Mitra AR, Fergusson NA, Lloyd-Smith E, Wormsbecker A, Foster D, Karpov A, Crowe S, Haljan G, Chittock DR, Kanji HD, Sekhon MS, Griesdale DEG (2020) Baseline characteristics and outcomes of patients with COVID-19 admitted to intensive care units in Vancouver, Canada: a case series. CMAJ Can Med Assoc J J Assoc Medicale Can 192:E694–E701. https://doi.org/10.1503/cmaj.200794 S. Richardson, J.S. Hirsch, M. Narasimhan, J.M. Crawford, T. McGinn, K.W. Davidson, and the Northwell COVID-19 Research Consortium, D.P. Barnaby, L.B. Becker, J.D. Chelico, S.L. Cohen, J. Cookingham, K. Coppa, M.A. Diefenbach, A.J. Dominello, J. Duer-Hefele, L. Falzon, J. Gitlin, N. Hajizadeh, T.G. Harvin, D.A. Hirschwerk, E.J. Kim, Z.M. Kozel, L.M. Marrast, J.N. Mogavero, G.A. Osorio, M. Qiu, T.P. Zanos, Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area, JAMA. (2020). https://doi.org/10.1001/jama.2020.6775 Fink AL, Klein SL (2015) Sex and gender impact immune responses to vaccines among the elderly. Physiol Bethesda MD 30:408–416. https://doi.org/10.1152/physiol.00035.2015 Brandão AP, de Oliveira TC, de Cunto Brandileone MC, Gonçalves JE, Yara TI, Simonsen V (2004) Persistence of antibody response to pneumococcal capsular polysaccharides in vaccinated long term-care residents in Brazil. Vaccine 23:762–768. https://doi.org/10.1016/j.vaccine.2004.07.024 Goldblatt D, Southern J, Andrews N, Ashton L, Burbidge P, Woodgate S, Pebody R, Miller E (2009) The immunogenicity of 7-valent pneumococcal conjugate vaccine versus 23-valent polysaccharide vaccine in adults aged 50-80 years. Clin Infect Dis Off Publ Infect Dis Soc Am 49:1318–1325. https://doi.org/10.1086/606046 Fleming DM, Watson JM, Nicholas S, Smith GE, Swan AV (1995) Study of the effectiveness of influenza vaccination in the elderly in the epidemic of 1989-90 using a general practice database. Epidemiol Infect 115:581–589. https://doi.org/10.1017/s095026880005874x Nichol KL, Nordin JD, Nelson DB, Mullooly JP, Hak E (2007) Effectiveness of influenza vaccine in the community-dwelling elderly. N Engl J Med 357:1373–1381. https://doi.org/10.1056/NEJMoa070844 Vila-Córcoles A, Rodriguez T, de Diego C, Ochoa O, Valdivieso A, Salsench E, Ansa X, Badía W, Saún N, EPIVAC Study Group (2007) Effect of influenza vaccine status on winter mortality in Spanish community-dwelling elderly people during 2002-2005 influenza periods. Vaccine 25:6699–6707. https://doi.org/10.1016/j.vaccine.2007.07.015 Wang C-S, Wang S-T, Chou P (2002) Efficacy and cost-effectiveness of influenza vaccination of the elderly in a densely populated and unvaccinated community. Vaccine 20:2494–2499. https://doi.org/10.1016/s0264-410x(02)00181-0 Furman D, Hejblum BP, Simon N, Jojic V, Dekker CL, Thiébaut R, Tibshirani RJ, Davis MM (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A 111:869–874. https://doi.org/10.1073/pnas.1321060111 Talaat KR, Greenberg ME, Lai MH, Hartel GF, Wichems CH, Rockman S, Jeanfreau RJ, Ghosh MR, Kabongo ML, Gittleson C, Karron RA (2010) A single dose of unadjuvanted novel 2009 H1N1 vaccine is immunogenic and well tolerated in young and elderly adults. J Infect Dis 202:1327–1337. https://doi.org/10.1086/656601 Khurana S, Verma N, Talaat KR, Karron RA, Golding H (2012) Immune response following H1N1pdm09 vaccination: differences in antibody repertoire and avidity in young adults and elderly populations stratified by age and gender. J Infect Dis 205:610–620. https://doi.org/10.1093/infdis/jir791 Ciabattini A, Olivieri R, Lazzeri E, Medaglini D (2019) Role of the microbiota in the modulation of vaccine immune responses. Front. Microbiol 10. https://doi.org/10.3389/fmicb.2019.01305 Zimmermann P, Curtis N (2018) The influence of the intestinal microbiome on vaccine responses. Vaccine 36:4433–4439. https://doi.org/10.1016/j.vaccine.2018.04.066 Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng N-Y, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B (2019) Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178:1313–1328.e13. https://doi.org/10.1016/j.cell.2019.08.010 de Jong SE, Olin A, Pulendran B (2020) The impact of the microbiome on immunity to vaccination in humans. Cell Host Microbe 28:169–179. https://doi.org/10.1016/j.chom.2020.06.014 Conlon MA, Bird AR (2015) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44. https://doi.org/10.3390/nu7010017 Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22:458–478. https://doi.org/10.1016/j.molmed.2016.04.003 Vemuri R, Sylvia KE, Klein SL, Forster SC, Plebanski M, Eri R, Flanagan KL (2019) The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin Immunopathol 41:265–275. https://doi.org/10.1007/s00281-018-0716-7 Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522. https://doi.org/10.1038/s41569-018-0064-2 Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4 Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H (2018) Gut microbiome and aging: physiological and mechanistic insights. Nutr Healthy Aging 4:267–285. https://doi.org/10.3233/NHA-170030 Anand S, Mande SS (2018) Diet, microbiota and gut-lung connection. Front. Microbiol 9. https://doi.org/10.3389/fmicb.2018.02147 Chen X, Mao G, Leng SX (2014) Frailty syndrome: an overview. Clin Interv Aging 9:433–441. https://doi.org/10.2147/CIA.S45300 Keely S, Talley NJ, Hansbro PM (2012) Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol 5:7–18. https://doi.org/10.1038/mi.2011.55 Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166. https://doi.org/10.1038/nm.3444 Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O (2018) The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell Microbiol 20:e12966. https://doi.org/10.1111/cmi.12966 Groves HT, Higham SL, Moffatt MF, Cox MJ, Tregoning JS (2020) Respiratory viral infection alters the gut microbiota by inducing inappetence. MBio 11. https://doi.org/10.1128/mBio.03236-19 Looft T, Allen HK (2012) Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes 3:463–467. https://doi.org/10.4161/gmic.21288 Lake MA (2020) What we know so far: COVID-19 current clinical knowledge and research. Clin Med 20:124–127. https://doi.org/10.7861/clinmed.2019-coron Dhar D, Mohanty A (2020) Gut microbiota and Covid-19- possible link and implications. Virus Res 285:198018. https://doi.org/10.1016/j.virusres.2020.198018 Qi F, Qian S, Zhang S, Zhang Z (2020) Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 526:135–140. https://doi.org/10.1016/j.bbrc.2020.03.044 Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, van Schayck JP, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H (2020) SARS-CoV-2 productively infects human gut enterocytes. Science. 369:50–54. https://doi.org/10.1126/science.abc1669 Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, Yin H, Xiao Q, Tang Y, Qu X, Kuang L, Fang X, Mishra N, Lu J, Shan H, Jiang G, Huang X (2020) Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 5:434–435. https://doi.org/10.1016/S2468-1253(20)30083-2 Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, Ng YY, Chu MY, Chung TWH, Tam AR, Yip CCY, Leung K-H, Fung AY-F, Zhang RR, Lin Y, Cheng HM, Zhang AJX, K.K.W. To, Chan K-H, Yuen K-Y, Leung WK (2020) Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 159:81–95. https://doi.org/10.1053/j.gastro.2020.03.065 Gu J, Han B, Wang J (2020) COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 158:1518–1519. https://doi.org/10.1053/j.gastro.2020.02.054 Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D (2018) Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol 40:83–94. https://doi.org/10.1016/j.smim.2018.10.010 Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12:36–44. https://doi.org/10.1016/S1473-3099(11)70295-X Benoit A, Beran J, Devaster J-M, Esen M, Launay O, Leroux-Roels G, McElhaney JE, Oostvogels L, van Essen GA, Gaglani M, Jackson LA, Vesikari T, Legrand C, Tibaldi F, Innis BL, Dewé W (2015) Hemagglutination inhibition antibody titers as a correlate of protection against seasonal A/H3N2 influenza disease. Open Forum Infect. Dis 2. https://doi.org/10.1093/ofid/ofv067 Padron-Regalado E (2020) Vaccines for SARS-CoV-2: lessons from other coronavirus strains. Infect Dis Ther 9:255–274. https://doi.org/10.1007/s40121-020-00300-x Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Antunes R, S, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, Crotty S, Sette A, Weiskopf D (2020) Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. https://doi.org/10.1126/science.abd3871 Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, Chia WN, Chen MI-C, Wang L-F, Ooi EE, Kalimuddin S, Tambyah PA, Low JG-H, Tan Y-J, Bertoletti A (2020) SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 584:457–462. https://doi.org/10.1038/s41586-020-2550-z Amanat F, Krammer F (2020) SARS-CoV-2 vaccines: status report. Immunity 52:583–589. https://doi.org/10.1016/j.immuni.2020.03.007 Lin J, Zhang J-S, Su N, Xu J, Wang N, Chen J, Chen X, Liu Y, Gao HH, Jia Y, Liu Y, Sun R, Wang X, Yu D, Hai R, Gao Q, Ning Y, Wang H, Li M, Kan B, Dong G, An Q, Wang Y-Q, Han JY, Qin C, Yin W, Dongs X-P (2007) Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, Bailer RT, Gomez PL, Nason M, Mascola JR, Nabel GJ, Graham BS (2008) VRC 301 study team, a SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine. 26:6338–6343. https://doi.org/10.1016/j.vaccine.2008.09.026 NIH clinical trial of investigational vaccine for COVID-19 begins, Natl. Inst. Health NIH. (2020). https://www.nih.gov/news-events/news-releases/nih-clinical-trial-investigational-vaccine-covid-19-begins (accessed June 3, 2020) Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K, Reuschel EL, Robb ML, Racine T, Oh M, Lamarre C, Zaidi FI, Boyer J, Kudchodkar SB, Jeong M, Darden JM, Park YK, Scott PT, Remigio C, Parikh AP, Wise MC, Patel A, Duperret EK, Kim KY, Choi H, White S, Bagarazzi M, May JM, Kane D, Lee H, Kobinger G, Michael NL, Weiner DB, Thomas SJ, Maslow JN (2019) Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis 19:1013–1022. https://doi.org/10.1016/S1473-3099(19)30266-X Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19:305–306. https://doi.org/10.1038/d41573-020-00073-5 Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, Meade-White K, Okumura A, Callison J, Brumbaugh B, Avanzato VA, Rosenke R, Hanley PW, Saturday G, Scott D, Fischer ER, de Wit E (2020) Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:1–7. https://doi.org/10.1038/s41586-020-2324-7 van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato V, Bushmaker T, Flaxman A, Ulaszewska M, Feldmann F, Allen ER, Sharpe H, Schulz J, Holbrook M, Okumura A, Meade-White K, Pérez-Pérez L, Bissett C, Gilbride C, Williamson BN, Rosenke R, Long D, Ishwarbhai A, Kailath R, Rose L, Morris S, Powers C, Lovaglio J, Hanley PW, Scott D, Saturday G, de Wit E, Gilbert SC, Munster VJ (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586:578–582. https://doi.org/10.1038/s41586-020-2608-y. Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS (2019) Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front. Microbiol 10. https://doi.org/10.3389/fmicb.2019.01781 Tu Y-F, Chien C-S, Yarmishyn AA, Lin Y-Y, Luo Y-H, Lin Y-T, Lai W-Y, Yang D-M, Chou S-J, Yang Y-P, Wang M-L, Chiou S-H (2020) A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci 21:2657. https://doi.org/10.3390/ijms21072657 Petroski N (2017) Chapter 10 - Advax adjuvant: a potent and safe immunopotentiator composed of delta inulin. In: Schijns VEJC, O’Hagan DT (eds) Immunopotentiators in modern vaccines, Second edn. Academic Press, pp 199–210. https://doi.org/10.1016/B978-0-12-804019-5.00010-4 Lurie N, Saville M, Hatchett R, Halton J (2020) Developing Covid-19 vaccines at pandemic speed. N Engl J Med 382:1969–1973. https://doi.org/10.1056/NEJMp2005630 Dandekar AA, Perlman S (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5:917–927. https://doi.org/10.1038/nri1732 Whitwell HJ, Bacalini MG, Blyuss O, Chen S, Garagnani P, Gordleeva SY, Jalan S, Ivanchenko M, Kanakov O, Kustikova V, Mariño IP, Meyerov I, Ullner E, Franceschi C, Zaikin A (2020) The human body as a super network: digital methods to analyze the propagation of aging. Front. Aging Neurosci 12. https://doi.org/10.3389/fnagi.2020.00136 Lucchesi S, Furini S, Medaglini D, Ciabattini A (2020) From bivariate to multivariate analysis of cytometric data: overview of computational methods and their application in vaccination studies. Vaccines. 8:138. https://doi.org/10.3390/vaccines8010138 Lucchesi S, Nolfi E, Pettini E, Pastore G, Fiorino F, Pozzi G, Medaglini D, Ciabattini A (2020) Computational analysis of multiparametric flow cytometric data to dissect B cell subsets in vaccine studies. Cytometry A 97:259–267. https://doi.org/10.1002/cyto.a.23922 Chakraborty AK (2017) A perspective on the role of computational models in immunology. Annu Rev Immunol 35:403–439. https://doi.org/10.1146/annurev-immunol-041015-055325 Pappalardo F, Flower D, Russo G, Pennisi M, Motta S (2015) Computational modelling approaches to vaccinology. Pharmacol Res 92:40–45. https://doi.org/10.1016/j.phrs.2014.08.006 Arvaniti E, Claassen M (2017) Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun 8:14825. https://doi.org/10.1038/ncomms14825 Strickland J, Zang Q, Paris M, Lehmann DM, Allen D, Choksi N, Matheson J, Jacobs A, Casey W, Kleinstreuer N (2017) Multivariate models for prediction of human skin sensitization hazard. J Appl Toxicol JAT 37:347–360. https://doi.org/10.1002/jat.3366 Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, Kennedy K, Wu H, Bennouna S, Oluoch H, Miller J, Vencio RZ, Mulligan M, Aderem A, Ahmed R, Pulendran B (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125. https://doi.org/10.1038/ni.1688 Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR, Castro E, Akondy R, Rinfret A, Yassine-Diab B, Said EA, Chouikh Y, Cameron MJ, Clum R, Kelvin D, Somogyi R, Greller LD, Balderas RS, Wilkinson P, Pantaleo G, Tartaglia J, Haddad EK, Sékaly R-P (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205:3119–3131. https://doi.org/10.1084/jem.20082292 Nakaya HI, Clutterbuck E, Kazmin D, Wang L, Cortese M, Bosinger SE, Patel NB, Zak DE, Aderem A, Dong T, Del Giudice G, Rappuoli R, Cerundolo V, Pollard AJ, Pulendran B, Siegrist C-A (2016) Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc Natl Acad Sci U S A 113:1853–1858. https://doi.org/10.1073/pnas.1519690113 Bucasas KL, Franco LM, Shaw CA, Bray MS, Wells JM, Niño D, Arden N, Quarles JM, Couch RB, Belmont JW (2011) Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis 203:921–929. https://doi.org/10.1093/infdis/jiq156 Furman D, Jojic V, Kidd B, Shen-Orr S, Price J, Jarrell J, Tse T, Huang H, Lund P, Maecker HT, Utz PJ, Dekker CL, Koller D, Davis MM (2013) Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol Syst Biol 9:659. https://doi.org/10.1038/msb.2013.15 Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M, Rouphael N, Frasca D, Gersten M, Mehta AK, Gaujoux R, Li G-M, Gupta S, Ahmed R, Mulligan MJ, Shen-Orr S, Blomberg BB, Subramaniam S, Pulendran B (2015) Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity. 43:1186–1198. https://doi.org/10.1016/j.immuni.2015.11.012 Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, Schmidt DS, Johnson SE, Milton A, Rajam G, Kasturi S, Carlone GM, Quinn C, Chaussabel D, Palucka AK, Mulligan MJ, Ahmed R, Stephens DS, Nakaya HI, Pulendran B (2014) Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 15:195–204. https://doi.org/10.1038/ni.2789 Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS, McCausland M, Chiu C, Canniff J, Dubey S, Liu K, Tran V, Hagan T, Duraisingham S, Wieland A, Mehta AK, Whitaker JA, Subramaniam S, Jones DP, Sette A, Vora K, Weinberg A, Mulligan MJ, Nakaya HI, Levin M, Ahmed R, Pulendran B (2017) Metabolic phenotypes of response to vaccination in humans. Cell 169:862–877.e17. https://doi.org/10.1016/j.cell.2017.04.026 Qi Q, Cavanagh MM, Saux SL, Wagar LE, Mackey S, Hu J, Maecker H, Swan GE, Davis MM, Dekker CL, Tian L, Weyand CM, Goronzy JJ (2016) Defective T memory cell differentiation after varicella zoster vaccination in older individuals. PLoS Pathog 12:e1005892. https://doi.org/10.1371/journal.ppat.1005892 van den Berg RA, Coccia M, Ballou WR, Kester KE, Ockenhouse CF, Vekemans J, Jongert E, Didierlaurent AM, van der Most RG (2017) Predicting RTS,S vaccine-mediated protection from transcriptomes in a malaria-challenge clinical trial. Front. Immunol 8. https://doi.org/10.3389/fimmu.2017.00557 Kazmin D, Nakaya HI, Lee EK, Johnson MJ, van der Most R, van den Berg RA, Ballou WR, Jongert E, Wille-Reece U, Ockenhouse C, Aderem A, Zak DE, Sadoff J, Hendriks J, Wrammert J, Ahmed R, Pulendran B (2017) Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci U S A 114:2425–2430. https://doi.org/10.1073/pnas.1621489114 Vahey MT, Wang Z, Kester KE, Cummings J, Heppner DG, Nau ME, Ofori-Anyinam O, Cohen J, Coche T, Ballou WR, Ockenhouse CF (2010) Expression of Genes Associated with Immunoproteasome Processing of Major Histocompatibility Complex Peptides Is Indicative of Protection with Adjuvanted RTS,S Malaria Vaccine. J Infect Dis 201:580–589. https://doi.org/10.1086/650310 Reif DM, Motsinger-Reif AA, McKinney BA, Rock MT, Crowe JE, Moore JH (2009) Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun 10:112–119. https://doi.org/10.1038/gene.2008.80 Medaglini D, Siegrist C-A (2017) Immunomonitoring of human responses to the rVSV-ZEBOV Ebola vaccine. Curr Opin Virol 23:88–94. https://doi.org/10.1016/j.coviro.2017.03.008 Medaglini D, Harandi AM, Ottenhoff THM, Siegrist C-A, VSV-Ebovac Consortium (2015) Ebola vaccine R&D: filling the knowledge gaps. Sci. Transl. Med 7:317ps24. https://doi.org/10.1126/scitranslmed.aad3106 Medaglini D, Santoro F, Siegrist C-A (2018) Correlates of vaccine-induced protective immunity against Ebola virus disease. Semin Immunol 39:65–72. https://doi.org/10.1016/j.smim.2018.07.003 Rechtien A, Richert L, Lorenzo H, Martrus G, Hejblum B, Dahlke C, Kasonta R, Zinser M, Stubbe H, Matschl U, Lohse A, Krähling V, Eickmann M, Becker S, VEBCON Consortium, Thiébaut R, Altfeld M, Addo MM (2017) Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the Ebola vaccine rVSV-ZEBOV. Cell Rep 20:2251–2261. https://doi.org/10.1016/j.celrep.2017.08.023 Zak DE, Andersen-Nissen E, Peterson ER, Sato A, Hamilton MK, Borgerding J, Krishnamurty AT, Chang JT, Adams DJ, Hensley TR, Salter AI, Morgan CA, Duerr AC, Rosa SCD, Aderem A, McElrath MJ (2012) Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity. Proc Natl Acad Sci 109:E3503–E3512. https://doi.org/10.1073/pnas.1208972109 Hoek KL, Samir P, Howard LM, Niu X, Prasad N, Galassie A, Liu Q, Allos TM, Floyd KA, Guo Y, Shyr Y, Levy SE, Joyce S, Edwards KM, Link AJ (2015) A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination. PLoS One 10:e0118528. https://doi.org/10.1371/journal.pone.0118528