Direct synthesis of dimethyl ether: A simulation study on the influence of the catalyst configuration
Tài liệu tham khảo
Cook, 2016, Consensus on consensus: a synthesis of consensus estimates on human-caused global warming, Environ. Res. Lett., 11, 1, 10.1088/1748-9326/11/4/048002
NASA - Global Climate Change, “Scientific Consensus: Earth's Climate is Warming,” [Online]. Available: https://climate.nasa.gov/scientific-consensus/. [Accessed 27 10 2019].
United Nations, “Paris Agreement,” 2015. [Online]. Available: https://unfccc.int/sites/default/files/english_paris_agreement.pdf. [Accessed 27 10 2019].
Masson-Delmotte, Zhai, Pörtner, Roberts, Skea, Shukla, Pirani, Moufouma-Okia, Péan, Pidcock, Connors, Matthews, Chen, Zhou, Gomis, Lonnoy, Maycock, Tignor and Waterfield, “An IPCC Special Report on the impacts of global warming of 1.5°C.above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development,,” Intergovernmental Panel on Climate Change, 2018.
United Nations – Framework Convention on Climate Change, “Summary of GHG Emissions for European Union (KP),” [Online]. Available: https://di.unfccc.int/ghg_profile_annex1. [Accessed 27 10 2019].
Official Journal of the European Union, “DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance),” 05 06 2009. [Online]. Available: https://eur-lex.europa.eu/eli/dir/2009/28/oj. [Accessed 25 10 2019].
Official Journal of the European Union, “DIRECTIVE (EU) 2018/2001 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance),” 21 12 2018. [Online]. Available: https://eur-lex.europa.eu/eli/dir/2018/2001/oj. [Accessed 25 10 2019].
Koytsoumpaa, 2018, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 10.1016/j.supflu.2017.07.029
German Federal Ministry of Education and Research, “Kopernikus-Projekte,” [Online]. Available: https://www.kopernikus-projekte.de/en/projects/power2x. [Accessed 27 10 2018].
Ralph-Uwe, 2018, Erzeugung alternativer fluessiger Kraftstoffe im zuku¨ nftigen Energiesystem, Chem. Ing. Tech., 90, 179
Schmidt, 2018, Power-to-Liquids as Renewable Fuel Option for Aviation: A Review, Chem. Ing. Tech., 90, 169
Park, 2015, Injection strategy for simultaneous reduction of NOx and soot emissions using two-stage injection in DME fueled engine, Appl. Energy, 143, 262, 10.1016/j.apenergy.2015.01.049
M. Mueller and U. Huebsch, “Dimethyl Ether,” in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 11.
Arcoumanis, 2008, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87, 1014, 10.1016/j.fuel.2007.06.007
Ozturk, 2019, Intensified dimethyl ether production from synthesis gas with CO2, Chem. Eng. J., 370, 885, 10.1016/j.cej.2019.03.210
Tozar, 2020, Strategies for improving CO2 utilization in microchannel enabled production of dimethyl ether, Chem. Eng. Process. Process Intensif., 10.1016/j.cep.2020.107914
Erena, 2005, Direct synthesis of dimethyl ether from (H2+CO) and (H2+CO2) feeds. Effect of feed composition, Int. J. Chem. Reactor Eng., 3, A44, 10.2202/1542-6580.1295
Behr, 2018, Chemische Umsetzung von Kohlendioxid, Chem. Ing. Tech., 90, 593, 10.1002/cite.201700145
Arena, 2007, Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, J. Catal., 249, 185, 10.1016/j.jcat.2007.04.003
Karolevis, 2019, Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles, J. Catal., 369, 415, 10.1016/j.jcat.2018.11.012
García-Trenco, 2018, PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol, Appl. Catal., B, 220, 9, 10.1016/j.apcatb.2017.07.069
Ahmad, 2014, Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether production, Catal. Commun., 43, 52, 10.1016/j.catcom.2013.08.020
Dadgar, 2016, Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction, Catal. Today, 270, 76, 10.1016/j.cattod.2015.09.024
Ramos, 2005, Role of dehydration catalyst acid properties on one-step DME synthesis over ohysical mixtures, Catal. Today, 101, 39, 10.1016/j.cattod.2004.12.007
García-Trenco, 2015, A rational strategy for preparing Cu–ZnO/H-ZSM-5 hybrid catalystswith enhanced stability during the one-step conversion of syngas todimethyl ether (DME), Appl. Catal., A, 493, 40, 10.1016/j.apcata.2015.01.007
Cai, 2015, Effect of Sn additives on the CuZnAl–HZSM-5 hybrid catalysts for the direct DME synthesis from syngas, Appl. Catal., A, 502, 370, 10.1016/j.apcata.2015.06.030
Gentzen, 2016, Bifunctional hybrid catalysts derived from Cu/Zn-based nanoparticles for single-step dimethyl ether synthesis, Catal. Sci. Technol., 6, 1054, 10.1039/C5CY01043H
Ateka, 2018, Kinetic modeling of the direct synthesis of dimethyl ether over a CuO–ZnO–MnO/SAPO–18 catalyst and assessment of the CO2 conversion, Fuel Process. Technol., 181, 233, 10.1016/j.fuproc.2018.09.024
Yang, 2010, Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis, J. Am. Chem. Soc., 132, 8129, 10.1021/ja101882a
Phienluphon, 2015, Designing core (Cu/ZnO/Al2O3)–shell (SAPO-11) zeolite capsule catalyst with a facile physical way for dimethyl ether direct synthesis from syngas, Chem. Eng. J., 270, 605, 10.1016/j.cej.2015.02.071
Wang, 2014, Synthesis of dimethyl ether from syngas over core–shell structure catalyst CuO–ZnO–Al2O3@SiO2–Al2O3, Chem. Eng. J., 250, 248, 10.1016/j.cej.2014.04.018
Sánchez-Contador, 2018, Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst, Fuel Process. Technol., 179, 258, 10.1016/j.fuproc.2018.07.009
Nie, 2012, Core–shell structured CuO–ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether, Fuel, 96, 419, 10.1016/j.fuel.2011.12.048
Pinkaew, 2013, A new core–shell-like capsule catalyst with SAPO-46 zeolite shell encapsuated Cr/ZnOfor the controlled tandem synthesis od dimethyl ether from syngas, Fuel, 111, 727, 10.1016/j.fuel.2013.03.027
Ahmad, 2014, Zeolite-based bifunctional catalysts for the single step synthesis of dimethyl ether from CO-rich synthesis gas, Fuel Process. Technol., 121, 38, 10.1016/j.fuproc.2014.01.006
Jeong, 2013, Effects of Cu–ZnO Content on Reaction Rate for Direct Synthesis of DME from Syngas with Bifunctional Cu–ZnO/gamma-Al2O3 Catalyst, Catal Lett, 143, 666, 10.1007/s10562-013-1022-6
Jiang, 2012, One-pot synthesis of mesoporous Cu–gamma-Al2O3 as bifunctional catalyst for direct dimethyl ether synthesis, Microporous Mesoporous Mater., 164, 3, 10.1016/j.micromeso.2012.08.004
Peláez, 2017, Direct synthesis of dimethyl ether from syngas over mechanical mixtures of CuO/ZnO/Al2O3 and gamma-Al2O3: Process optimization and kinetic modelling, Fuel Process. Technol., 168, 40, 10.1016/j.fuproc.2017.09.004
García-Trenco, 2012, Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction, Catal. Today, 179, 43, 10.1016/j.cattod.2011.06.034
Lu, 2004, Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor, Chem. Eng. Sci., 59, 5455, 10.1016/j.ces.2004.07.031
Sierra, 2010, Deactivation Kinetics for Direct Dimethyl Ether Synthesis on a CuO-ZnO-Al2O3/γ-Al2O3 Catalyst, Ind. Eng. Chem. Res., 49, 481, 10.1021/ie900978a
Aguayo, 2005, Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2, Catal. Today, 106, 265, 10.1016/j.cattod.2005.07.144
Erena, 2008, Deactivation of a CuO-ZnO-Al2O3/gamma-Al2O3 Catalyst in the Synthesis of Dimethyl ther, Ind. Eng. Chem. Res., 47, 2238, 10.1021/ie071478f
A. García-Trenco and A. Martínez, “Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity,” Appl. Catal., A, Vols. 411-412, pp. 170-179, 2012.
García-Trenco, 2013, The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis, Appl. Catal., A, 468, 102, 10.1016/j.apcata.2013.08.038
García-Trenco, 2014, The influence of zeolite surface-aluminum species on the deactivation deactivationof CuZnAl/zeolite hybrid catalysts for the direct DME synthesis, Catal. Today, 277, 144, 10.1016/j.cattod.2013.09.051
Aguayo, 2007, Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO-ZnO-Al2O3/gamma-Al2O3 Catalyst, Ind. Eng. Chem. Res., 46, 5522, 10.1021/ie070269s
Erena, 2005, Effect of operating conditions on the synthesis of dimethyl ether over a CuO-ZnO-Al2O3/NaHZSM-5 bifunctional catalyst, Int. J. Chem. Reactor Eng., 107, 467
M. Cai A. Palcic V. Subramanian M. S., O. Ersen, V. Valtchev, V. V. Ordomsky and A. Y. Khodakov, Direct dimethyl ether synthesis from syngas on copper–zeolite hybrid catalysts with a wide range of zeolite particle sizes J. Catal. 338 2016 227 238.
Graff, 1988, Kinetics of low-pressure Methanol Synthesis, Chem. Eng. Sci., 43, 3185, 10.1016/0009-2509(88)85127-3
Vanden Bussche, 1996, A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 Catalyst, J. Catal., 161, 1, 10.1006/jcat.1996.0156
Seidel, 2018, Kinetic modeling of methanol synthesis from renewable resources, Chem. Eng. Sci., 175, 130, 10.1016/j.ces.2017.09.043
Graff, 1990, Intra-particle diffusion limitations in the low-pressure Methanol Synthesis, Chem. Eng. Sci., 45, 773, 10.1016/0009-2509(90)85001-T
Lommerts, 2000, Mathematical modeling of internal mass transport limitations in methanol synthesis, Chem. Eng. Sci., 55, 5589, 10.1016/S0009-2509(00)00194-9
Bercic, 1993, Catalytic Dehydration of Methanol to Dimethyl Ether. Kinetic Investigation and Reactor Simulation, Ind. Eng. Chem. Res., 32, 2478, 10.1021/ie00023a006
Tavan, 2013, From laboratory experiments to simulation studies of methanol dehydration to produce dimethyl ether-Part I: Reaction kinetic study, Chem. Eng. Process., 73, 144, 10.1016/j.cep.2013.06.006
Hadipour, 2007, Kinetic parameters and dynamic modeling of a reactor for direct conversion of synthesis gas to dimethyl ether, J. Ind. Eng. Chem., 13, 558
Peláez, 2018, Direct synthesis of dimethyl ether in multi-tubular fixed-bed reactors: 2D multi-scale modelling and optimum design, Fuel Process. Technol., 174, 149, 10.1016/j.fuproc.2018.02.025
Pyatnitskii, 2009, Kinetic modeling for the conversion of synthesis gas to dimethyl ether on a mixed Cu-Zn-Al2O3 catalyst with gamma-Al2O3, Theor. Exp. Chem., 45, 325, 10.1007/s11237-009-9101-x
Baracchini, 2020, Structured catalysts for the direct synthesis of dimethyl ether from synthesis gas: a comparison of core@shell versus hybrid catalyst configuration, Catal. Today, 342, 46, 10.1016/j.cattod.2019.07.016
Ding, 2015, Simulation of one-stage dimethyl ether synthesis over a core-shell catalyst, Chem. Ing. Tech., 87, 702, 10.1002/cite.201400157
Ding, 2015
Baerlocher, 2007
S. Tauro, One-Step Synthesis of Dimethyl Ether Using Microreactors. Dissertation. Karlsruhe Institute of Techology, Aachen: Shaker, 2014.
Hayer, 2013, Characteristics of integrated micro packed bed reactor-heatexchanger configurations in the direct synthesis of dimethyl ether, Chem. Eng. Process., 70, 77, 10.1016/j.cep.2013.03.021
Knochen, 2010, Fischer–Tropsch synthesis in milli-structured fixed-bed reactors: Experimental study and scale-up considerations, Chem. Eng. Process., 49, 958, 10.1016/j.cep.2010.04.013
Némethné, 2014, Microreactors: a new concept for chemical synthesis and technological feasibility, Mater. Sci. Eng., 39, 89
VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, VDI-Wärmeatlas, Section G, Heidelberg: Springer-Verlag, 2013.
He, 2014
Li, 2016, Facile preparation of highly efficient CuO-ZnO-ZrO2/HZSM-5 bifunctional catalyst for one-step CO2 hydrogenation to dimethyl ether: Influence of calcination temperature, Chem. Eng. Res. Des., 11, 100, 10.1016/j.cherd.2016.04.018
Lee, 2007, Methanol-to -Gasoline vs. DME-to-Gasoline II. Process comparison and analysis, Fuel Sci. Technol. Int., 13, 1039, 10.1080/08843759508947721
Ng, 1999, Kinetics and modelling of dimethyl ether synthesis from synthesis gas, Chem. Eng. Sci., 54, 3587, 10.1016/S0009-2509(98)00514-4