Polybromo-1: The chromatin targeting subunit of the PBAF complex
Tài liệu tham khảo
Kornberg, 1977, Structure of chromatin, Annu. Rev. Biochem., 46, 931, 10.1146/annurev.bi.46.070177.004435
Kornberg, 1999, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell, 98, 285, 10.1016/S0092-8674(00)81958-3
Kornberg, 1992, Chromatin structure and transcription, Annu. Rev. Cell Biol., 8, 563, 10.1146/annurev.cb.08.110192.003023
Widom, 1998, Structure, dynamics, and function of chromatin in vitro, Annu. Rev. Biophys. Biomol. Struct., 27, 285, 10.1146/annurev.biophys.27.1.285
Becker, 2002, ATP-dependent nucleosome remodeling, Annu. Rev. Biochem., 71, 243, 10.1146/annurev.biochem.71.110601.135400
Workman, 1998, Alteration of nucleosome structure as a mechanism of transcriptional regulation, Annu. Rev. Biochem., 67, 545, 10.1146/annurev.biochem.67.1.545
McGhee, 1980, Nucleosome structure, Annu. Rev. Biochem., 49, 1115, 10.1146/annurev.bi.49.070180.005343
Ramakrishnan, 1997, Histone structure and the organization of the nucleosome, Annu. Rev. Biophys. Biomol. Struct., 26, 83, 10.1146/annurev.biophys.26.1.83
Yoon, 2005, Reading and function of a histone code involved in targeting corepressor complexes for repression, Mol. Cell. Biol., 25, 324, 10.1128/MCB.25.1.324-335.2005
Deng, 2003, The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation, Mol. Cell. Biol., 23, 2633, 10.1128/MCB.23.8.2633-2644.2003
Winston, 1999, The bromodomain: a chromatin-targeting module?, Nat. Struct. Biol., 6, 601, 10.1038/10640
Nie, 2000, A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex, Mol. Cell. Biol., 20, 8879, 10.1128/MCB.20.23.8879-8888.2000
Collins, 1999, Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes, EMBO J., 18, 7029, 10.1093/emboj/18.24.7029
Peterson, 2000, Promoter targeting and chromatin remodeling by the SWI/SNF complex, Curr. Opin. Genet. Dev., 10, 187, 10.1016/S0959-437X(00)00068-X
Belandia, 2002, Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes, EMBO J., 21, 4094, 10.1093/emboj/cdf412
Montecino, 2007, Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence, Biochem. Cell Biol., 85, 419, 10.1139/O07-070
Zhang, 1998, Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase, EMBO J., 17, 3155, 10.1093/emboj/17.11.3155
Wang, 1996, Purification and biochemical heterogeneity of the mammalian SWI–SNF complex, EMBO J., 15, 5370, 10.1002/j.1460-2075.1996.tb00921.x
Wang, 1996, Diversity and specialization of mammalian SWI/SNF complexes, Genes Dev., 10, 2117, 10.1101/gad.10.17.2117
Phelan, 1999, Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits, Mol. Cell, 3, 247, 10.1016/S1097-2765(00)80315-9
Zhao, 1998, Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling, Cell, 95, 625, 10.1016/S0092-8674(00)81633-5
Rando, 2002, Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex, Proc. Natl. Acad. Sci. U.S.A., 99, 2824, 10.1073/pnas.032662899
Chen, 2005, Regulating SWI/SNF subunit levels via protein–protein interactions and proteasomal degradation, Mol. Cell. Biol., 25, 9016, 10.1128/MCB.25.20.9016-9027.2005
Marshall, 2003, Differential requirement of SWI/SNF for androgen receptor activity, J. Biol. Chem., 278, 30605, 10.1074/jbc.M304582200
García-Pedrero, 2006, The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells, J. Biol. Chem., 281, 22656, 10.1074/jbc.M602561200
Hsiao, 2003, BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation, Mol. Cell. Biol., 23, 6210, 10.1128/MCB.23.17.6210-6220.2003
Link, 2005, BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF, Mol. Cell. Biol., 25, 2200, 10.1128/MCB.25.6.2200-2215.2005
Zhang, 2002, Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5, Mol. Cell. Biol., 22, 5975, 10.1128/MCB.22.16.5975-5988.2002
Oruetxebarria, 2004, P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cell, J. Biol. Chem., 279, 3807, 10.1074/jbc.M309333200
Versteege, 2002, A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle, Oncogene, 21, 6403, 10.1038/sj.onc.1205841
Yan, 2005, PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes, Genes Dev., 19, 1662, 10.1101/gad.1323805
Debril, 2004, Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit, J. Biol. Chem., 279, 16677, 10.1074/jbc.M312288200
Lickert, 2004, Baf60c is essential for function of BAF chromatin remodelling complexes in heart development, Nature, 432, 107, 10.1038/nature03071
Lessard, 2007, An essential switch in subunit composition of a chromatin remodeling complex during neural development, Neuron, 55, 201, 10.1016/j.neuron.2007.06.019
Bettinger, 2004, Actin up in the nucleus, Nat. Rev. Mol. Cell Biol., 5, 410, 10.1038/nrm1370
Xue, 2000, The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes, Proc. Natl. Acad. Sci. U.S.A., 97, 13015, 10.1073/pnas.240208597
Taatjes, 2004, Regulatory diversity among metazoan co-activator complexes, Nat. Rev. Mol. Cell Biol., 5, 403, 10.1038/nrm1369
Dallas, 2000, The human SWI–SNF complex protein p270 is an arid family member with non-sequence-specific DNA binding activity, Mol. Cell. Biol., 20, 3137, 10.1128/MCB.20.9.3137-3146.2000
Chandrasekaran, 2006, Expression, purification and characterization of individual bromodomains from human polybromo-1, Protein Expr. Purif., 50, 111, 10.1016/j.pep.2006.07.004
Baetz, 2004, The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion, Mol. Cell. Biol., 24, 1232, 10.1128/MCB.24.3.1232-1244.2003
Hsu, 2003, The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation, Mol. Cell. Biol., 23, 3202, 10.1128/MCB.23.9.3202-3215.2003
Huang, 2004, The RSC nucleosome-remodeling complex is required for cohesin's association with chromosome arms, Mol. Cell, 13, 739, 10.1016/S1097-2765(04)00103-0
Zeng, 2002, Bromodomain: an acetyl-lysine binding domain, FEBS Lett., 513, 124, 10.1016/S0014-5793(01)03309-9
Jeanmougin, 1997, The bromodomain revisited, Trends Biochem. Sci., 22, 151, 10.1016/S0968-0004(97)01042-6
Filetici, 2001, The bromodomain: a chromatin browser, Front. Biosci., 6, 866, 10.2741/Filetici
Goodwin, 2001, The BAH domain, polybromo and the RSC chromatin remodelling complex, Gene, 268, 1, 10.1016/S0378-1119(01)00428-0
Callebaut, 1999, The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation, FEBS Lett., 446, 189, 10.1016/S0014-5793(99)00132-5
Thomas, 2001, HMG1 and 2, and related ‘architectural’ DNA-binding proteins, Trends Biochem. Sci., 26, 167, 10.1016/S0968-0004(01)01801-1
Thomas, 2001, HMG1 and 2: architectural DNA-binding proteins, Biochem. Soc. Trans., 29, 395, 10.1042/bst0290395
Štros, 2007, The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins, Cell. Mol. Life Sci., 64, 2590, 10.1007/s00018-007-7162-3
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Strahl, 2000, The language of covalent histone modifications, Nature, 403, 41, 10.1038/47412
Jenuwein, 2001, Translating the histone code, Science, 293, 1074, 10.1126/science.1063127
Zhang, 2001, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails, Genes Dev., 15, 2343, 10.1101/gad.927301
Cheung, 2000, Signalling to chromatin through histone modifications, Cell, 103, 263, 10.1016/S0092-8674(00)00118-5
Turner, 2000, Histone acetylation and an epigenetic code, Bioessays, 22, 836, 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
Loyola, 2001, Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription, Genes Dev., 15, 2837, 10.1101/gad.937401
Lachner, 2002, The many faces of histone lysine methylation, Curr. Opin. Cell Biol., 14, 286, 10.1016/S0955-0674(02)00335-6
Struhl, 1998, Histone acetylation and transcriptional regulatory mechanisms, Genes Dev., 12, 599, 10.1101/gad.12.5.599
Staal, 2000, Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2, J. Cell. Physiol., 185, 269, 10.1002/1097-4652(200011)185:2<269::AID-JCP12>3.0.CO;2-L
Garzón, 2008, Acetylation-dependent binding analysis of the yeast gcn5 bromodomain protein, Am. J. Undergrad. Res., 7, 19, 10.33697/ajur.2008.009
Kanno, 2004, Selective recognition of acetylated histones by bromodomain proteins visualized in living cells, Mol. Cell, 13, 33, 10.1016/S1097-2765(03)00482-9
Cairns, 1996, RSC, an essential, abundant chromatin-remodeling complex, Cell, 87, 1249, 10.1016/S0092-8674(00)81820-6
Roth, 2001, Histone acetyltransferases, Annu. Rev. Biochem., 70, 81, 10.1146/annurev.biochem.70.1.81
Dhalluin, 1999, Structure and ligand of a histone acetyltransferase bromodomain, Nature, 399, 491, 10.1038/20974
Owen, 2000, The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p, EMBO J., 19, 6141, 10.1093/emboj/19.22.6141
Denis, 2006, Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines, J. Proteome Res., 5, 502, 10.1021/pr050430u
Horn, 2001, The bromodomain: a regulator of ATP-dependent chromatin remodeling?, Front. Biosci., 6, 1019, 10.2741/Horn
Schweiger, 2006, Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function, J. Virol., 80, 4276, 10.1128/JVI.80.9.4276-4285.2006
Kupitz, 2008, Kinetic analysis of acetylation-dependent Pb1 bromodomain–histone interactions, Biophys. Chem., 136, 7, 10.1016/j.bpc.2008.03.011
Chandrasekaran, 2008, Thermodynamic analysis of the acetylation dependence of bromodomain–histone interactions, Anal. Biochem., 374, 304, 10.1016/j.ab.2007.12.008
Chandrasekaran, 2007, Polybromo-1 bromodomains bind histone H3 at specific acetyl-lysine positions, Biochem. Biophys. Res. Commun., 355, 661, 10.1016/j.bbrc.2007.01.193
Mohrmann, 2005, Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes, Biochim. Biophys. Acta, 1681, 59, 10.1016/j.bbaexp.2004.10.005
Kasten, 2004, Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14, EMBO J., 23, 1348, 10.1038/sj.emboj.7600143
Hassan, 2006, The SWI2/SNF2 bromodomain is required for the displacement of saga and the octamer transfer of saga-acetylated nucleosomes, J. Biol. Chem., 281, 18126, 10.1074/jbc.M602851200
Carey, 2006, RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation, Mol. Cell, 24, 481, 10.1016/j.molcel.2006.09.012
Cairns, 1999, Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH and bromodomains, Mol. Cell, 4, 715, 10.1016/S1097-2765(00)80382-2
Zeng, 2008, Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing, Nat. Struct. Mol. Biol., 15, 626, 10.1038/nsmb.1416
Sun, 2007, Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4, Biochem. Biophys. Res. Commun., 358, 435, 10.1016/j.bbrc.2007.04.139
Hudson, 2000, Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain, J. Mol. Biol., 304, 355, 10.1006/jmbi.2000.4207
Jacobson, 2000, Structure and function of a human TAF(II)250 double bromodomain module, Science, 288, 1422, 10.1126/science.288.5470.1422
VanDemark, 2007, Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation, Mol. Cell, 27, 817, 10.1016/j.molcel.2007.08.018
Mujtaba, 2002, Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain, Mol. Cell, 9, 575, 10.1016/S1097-2765(02)00483-5
Mujtaba, 2004, Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation, Mol. Cell, 13, 251, 10.1016/S1097-2765(03)00528-8
Zeng, 2008, Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300, Structure, 16, 643, 10.1016/j.str.2008.01.010
Shen, 2007, Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails, Biochemistry, 46, 2100, 10.1021/bi0611208
Pamblanco, 2001, Bromodomain factor 1 (Bdf1) protein interacts with histones, FEBS Lett., 496, 31, 10.1016/S0014-5793(01)02397-3
Pizzitutti, 2006, The role of loop ZA and pro371 in the function of yeast Gcn5p bromodomain revealed through molecular dynamics and experiment, J. Mol. Recognit., 19, 1, 10.1002/jmr.748
Pearson, 1988, Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith–Waterman and FASTA algorithms, Proc. Natl. Acad. Sci. U.S.A., 85, 2444, 10.1073/pnas.85.8.2444
Thompson, 1994, ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673
Oliver, 2005, Crystal structure of the proximal BAH domain of the polybromo protein, Biochem. J., 389, 657, 10.1042/BJ20050310
Zhang, 2002, Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing, EMBO J., 21, 4600, 10.1093/emboj/cdf468
Hou, 2006, Structure of the Sir3 protein bromo adjacent homology (BAH) domain from S. cerevisiae at 1.95 Å resolution, Protein Sci., 15, 1182, 10.1110/ps.052061006
Hsu, 2005, Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing, Proc. Natl. Acad. Sci. U.S.A., 102, 8519, 10.1073/pnas.0502946102
Hou, 2005, Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing, Proc. Natl. Acad. Sci. U.S.A., 102, 8489, 10.1073/pnas.0503525102
Wong, 2002, RSC2 encoding a component of the rsc nucleosome remodeling complex is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae, Mol. Cell. Biol., 22, 4218, 10.1128/MCB.22.12.4218-4229.2002
Noguchi, 2006, The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo, EMBO J., 25, 5372, 10.1038/sj.emboj.7601396
Bell, 1995, The multidomain structure of Orc1p reveals similarity to regulators of DNA-replication and transcriptional silencing, Cell, 83, 563, 10.1016/0092-8674(95)90096-9
Gardner, 1999, A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in Saccharomyces cerevisiae, Genetics, 151, 31, 10.1093/genetics/151.1.31
Triolo, 1996, Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing, Nature, 381, 251, 10.1038/381251a0
Zhang, 2008, High mobility group proteins and their post-translational modifications, Biochim. Biophys. Acta, 1784, 1159, 10.1016/j.bbapap.2008.04.028
Bowles, 2000, Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators, Dev. Biol., 227, 239, 10.1006/dbio.2000.9883
Wegner, 1999, From head to toes: the multiple facets of Sox proteins, Nucleic Acids Res., 27, 1409, 10.1093/nar/27.6.1409
Wißmüller, 2006, The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors, Nucleic Acids Res., 34, 1735, 10.1093/nar/gkl105
Masse, 2002, The S. cerevisiae architectural HMGB protein NHP6a complexed with DNA: DNA and protein conformational changes upon binding, J. Mol. Biol., 323, 263, 10.1016/S0022-2836(02)00938-5
Weir, 1993, Structure of the HMG box motif in the B-domain of HMG1, EMBO J., 12, 1311, 10.1002/j.1460-2075.1993.tb05776.x
Marmorstein, 2001, A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression, Cell, 104, 247, 10.1016/S0092-8674(01)00209-4
Dai, 2005, Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination, Mol. Cell. Biol., 25, 4413, 10.1128/MCB.25.11.4413-4425.2005
Lee, 2002, Characterization of human SMARCE1r high-mobility-group protein, Biochim. Biophys. Acta, 1574, 269, 10.1016/S0167-4781(01)00373-6
Horikawa, 2002, cDNA cloning of the human polybromo-1 gene on chromosome 3p21, DNA Seq, 13, 211, 10.1080/1042517021000021590
Wang, 2004, Polybromo protein BAF180 functions in mammalian cardiac chamber maturation, Genes Dev., 18, 3106, 10.1101/gad.1238104
Xia, 2008, BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer, Cancer Res., 68, 1667, 10.1158/0008-5472.CAN-07-5276
A. Montia, vol., Ph.D., Columbia University, New York, 2007, pp. 104.