Polybromo-1: The chromatin targeting subunit of the PBAF complex

Biochimie - Tập 91 - Trang 309-319 - 2009
Martin Thompson1
1Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Tài liệu tham khảo

Kornberg, 1977, Structure of chromatin, Annu. Rev. Biochem., 46, 931, 10.1146/annurev.bi.46.070177.004435 Kornberg, 1999, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome, Cell, 98, 285, 10.1016/S0092-8674(00)81958-3 Kornberg, 1992, Chromatin structure and transcription, Annu. Rev. Cell Biol., 8, 563, 10.1146/annurev.cb.08.110192.003023 Widom, 1998, Structure, dynamics, and function of chromatin in vitro, Annu. Rev. Biophys. Biomol. Struct., 27, 285, 10.1146/annurev.biophys.27.1.285 Becker, 2002, ATP-dependent nucleosome remodeling, Annu. Rev. Biochem., 71, 243, 10.1146/annurev.biochem.71.110601.135400 Workman, 1998, Alteration of nucleosome structure as a mechanism of transcriptional regulation, Annu. Rev. Biochem., 67, 545, 10.1146/annurev.biochem.67.1.545 McGhee, 1980, Nucleosome structure, Annu. Rev. Biochem., 49, 1115, 10.1146/annurev.bi.49.070180.005343 Ramakrishnan, 1997, Histone structure and the organization of the nucleosome, Annu. Rev. Biophys. Biomol. Struct., 26, 83, 10.1146/annurev.biophys.26.1.83 Yoon, 2005, Reading and function of a histone code involved in targeting corepressor complexes for repression, Mol. Cell. Biol., 25, 324, 10.1128/MCB.25.1.324-335.2005 Deng, 2003, The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation, Mol. Cell. Biol., 23, 2633, 10.1128/MCB.23.8.2633-2644.2003 Winston, 1999, The bromodomain: a chromatin-targeting module?, Nat. Struct. Biol., 6, 601, 10.1038/10640 Nie, 2000, A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex, Mol. Cell. Biol., 20, 8879, 10.1128/MCB.20.23.8879-8888.2000 Collins, 1999, Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes, EMBO J., 18, 7029, 10.1093/emboj/18.24.7029 Peterson, 2000, Promoter targeting and chromatin remodeling by the SWI/SNF complex, Curr. Opin. Genet. Dev., 10, 187, 10.1016/S0959-437X(00)00068-X Belandia, 2002, Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes, EMBO J., 21, 4094, 10.1093/emboj/cdf412 Montecino, 2007, Nucleosome organization and targeting of SWI/SNF chromatin-remodeling complexes: contributions of the DNA sequence, Biochem. Cell Biol., 85, 419, 10.1139/O07-070 Zhang, 1998, Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase, EMBO J., 17, 3155, 10.1093/emboj/17.11.3155 Wang, 1996, Purification and biochemical heterogeneity of the mammalian SWI–SNF complex, EMBO J., 15, 5370, 10.1002/j.1460-2075.1996.tb00921.x Wang, 1996, Diversity and specialization of mammalian SWI/SNF complexes, Genes Dev., 10, 2117, 10.1101/gad.10.17.2117 Phelan, 1999, Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits, Mol. Cell, 3, 247, 10.1016/S1097-2765(00)80315-9 Zhao, 1998, Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling, Cell, 95, 625, 10.1016/S0092-8674(00)81633-5 Rando, 2002, Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex, Proc. Natl. Acad. Sci. U.S.A., 99, 2824, 10.1073/pnas.032662899 Chen, 2005, Regulating SWI/SNF subunit levels via protein–protein interactions and proteasomal degradation, Mol. Cell. Biol., 25, 9016, 10.1128/MCB.25.20.9016-9027.2005 Marshall, 2003, Differential requirement of SWI/SNF for androgen receptor activity, J. Biol. Chem., 278, 30605, 10.1074/jbc.M304582200 García-Pedrero, 2006, The SWI/SNF chromatin remodeling subunit BAF57 is a critical regulator of estrogen receptor function in breast cancer cells, J. Biol. Chem., 281, 22656, 10.1074/jbc.M602561200 Hsiao, 2003, BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation, Mol. Cell. Biol., 23, 6210, 10.1128/MCB.23.17.6210-6220.2003 Link, 2005, BAF57 governs androgen receptor action and androgen-dependent proliferation through SWI/SNF, Mol. Cell. Biol., 25, 2200, 10.1128/MCB.25.6.2200-2215.2005 Zhang, 2002, Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5, Mol. Cell. Biol., 22, 5975, 10.1128/MCB.22.16.5975-5988.2002 Oruetxebarria, 2004, P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cell, J. Biol. Chem., 279, 3807, 10.1074/jbc.M309333200 Versteege, 2002, A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle, Oncogene, 21, 6403, 10.1038/sj.onc.1205841 Yan, 2005, PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes, Genes Dev., 19, 1662, 10.1101/gad.1323805 Debril, 2004, Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit, J. Biol. Chem., 279, 16677, 10.1074/jbc.M312288200 Lickert, 2004, Baf60c is essential for function of BAF chromatin remodelling complexes in heart development, Nature, 432, 107, 10.1038/nature03071 Lessard, 2007, An essential switch in subunit composition of a chromatin remodeling complex during neural development, Neuron, 55, 201, 10.1016/j.neuron.2007.06.019 Bettinger, 2004, Actin up in the nucleus, Nat. Rev. Mol. Cell Biol., 5, 410, 10.1038/nrm1370 Xue, 2000, The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes, Proc. Natl. Acad. Sci. U.S.A., 97, 13015, 10.1073/pnas.240208597 Taatjes, 2004, Regulatory diversity among metazoan co-activator complexes, Nat. Rev. Mol. Cell Biol., 5, 403, 10.1038/nrm1369 Dallas, 2000, The human SWI–SNF complex protein p270 is an arid family member with non-sequence-specific DNA binding activity, Mol. Cell. Biol., 20, 3137, 10.1128/MCB.20.9.3137-3146.2000 Chandrasekaran, 2006, Expression, purification and characterization of individual bromodomains from human polybromo-1, Protein Expr. Purif., 50, 111, 10.1016/j.pep.2006.07.004 Baetz, 2004, The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion, Mol. Cell. Biol., 24, 1232, 10.1128/MCB.24.3.1232-1244.2003 Hsu, 2003, The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation, Mol. Cell. Biol., 23, 3202, 10.1128/MCB.23.9.3202-3215.2003 Huang, 2004, The RSC nucleosome-remodeling complex is required for cohesin's association with chromosome arms, Mol. Cell, 13, 739, 10.1016/S1097-2765(04)00103-0 Zeng, 2002, Bromodomain: an acetyl-lysine binding domain, FEBS Lett., 513, 124, 10.1016/S0014-5793(01)03309-9 Jeanmougin, 1997, The bromodomain revisited, Trends Biochem. Sci., 22, 151, 10.1016/S0968-0004(97)01042-6 Filetici, 2001, The bromodomain: a chromatin browser, Front. Biosci., 6, 866, 10.2741/Filetici Goodwin, 2001, The BAH domain, polybromo and the RSC chromatin remodelling complex, Gene, 268, 1, 10.1016/S0378-1119(01)00428-0 Callebaut, 1999, The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation, FEBS Lett., 446, 189, 10.1016/S0014-5793(99)00132-5 Thomas, 2001, HMG1 and 2, and related ‘architectural’ DNA-binding proteins, Trends Biochem. Sci., 26, 167, 10.1016/S0968-0004(01)01801-1 Thomas, 2001, HMG1 and 2: architectural DNA-binding proteins, Biochem. Soc. Trans., 29, 395, 10.1042/bst0290395 Štros, 2007, The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins, Cell. Mol. Life Sci., 64, 2590, 10.1007/s00018-007-7162-3 Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389 Strahl, 2000, The language of covalent histone modifications, Nature, 403, 41, 10.1038/47412 Jenuwein, 2001, Translating the histone code, Science, 293, 1074, 10.1126/science.1063127 Zhang, 2001, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails, Genes Dev., 15, 2343, 10.1101/gad.927301 Cheung, 2000, Signalling to chromatin through histone modifications, Cell, 103, 263, 10.1016/S0092-8674(00)00118-5 Turner, 2000, Histone acetylation and an epigenetic code, Bioessays, 22, 836, 10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X Loyola, 2001, Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription, Genes Dev., 15, 2837, 10.1101/gad.937401 Lachner, 2002, The many faces of histone lysine methylation, Curr. Opin. Cell Biol., 14, 286, 10.1016/S0955-0674(02)00335-6 Struhl, 1998, Histone acetylation and transcriptional regulatory mechanisms, Genes Dev., 12, 599, 10.1101/gad.12.5.599 Staal, 2000, Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2, J. Cell. Physiol., 185, 269, 10.1002/1097-4652(200011)185:2<269::AID-JCP12>3.0.CO;2-L Garzón, 2008, Acetylation-dependent binding analysis of the yeast gcn5 bromodomain protein, Am. J. Undergrad. Res., 7, 19, 10.33697/ajur.2008.009 Kanno, 2004, Selective recognition of acetylated histones by bromodomain proteins visualized in living cells, Mol. Cell, 13, 33, 10.1016/S1097-2765(03)00482-9 Cairns, 1996, RSC, an essential, abundant chromatin-remodeling complex, Cell, 87, 1249, 10.1016/S0092-8674(00)81820-6 Roth, 2001, Histone acetyltransferases, Annu. Rev. Biochem., 70, 81, 10.1146/annurev.biochem.70.1.81 Dhalluin, 1999, Structure and ligand of a histone acetyltransferase bromodomain, Nature, 399, 491, 10.1038/20974 Owen, 2000, The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p, EMBO J., 19, 6141, 10.1093/emboj/19.22.6141 Denis, 2006, Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines, J. Proteome Res., 5, 502, 10.1021/pr050430u Horn, 2001, The bromodomain: a regulator of ATP-dependent chromatin remodeling?, Front. Biosci., 6, 1019, 10.2741/Horn Schweiger, 2006, Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function, J. Virol., 80, 4276, 10.1128/JVI.80.9.4276-4285.2006 Kupitz, 2008, Kinetic analysis of acetylation-dependent Pb1 bromodomain–histone interactions, Biophys. Chem., 136, 7, 10.1016/j.bpc.2008.03.011 Chandrasekaran, 2008, Thermodynamic analysis of the acetylation dependence of bromodomain–histone interactions, Anal. Biochem., 374, 304, 10.1016/j.ab.2007.12.008 Chandrasekaran, 2007, Polybromo-1 bromodomains bind histone H3 at specific acetyl-lysine positions, Biochem. Biophys. Res. Commun., 355, 661, 10.1016/j.bbrc.2007.01.193 Mohrmann, 2005, Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes, Biochim. Biophys. Acta, 1681, 59, 10.1016/j.bbaexp.2004.10.005 Kasten, 2004, Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14, EMBO J., 23, 1348, 10.1038/sj.emboj.7600143 Hassan, 2006, The SWI2/SNF2 bromodomain is required for the displacement of saga and the octamer transfer of saga-acetylated nucleosomes, J. Biol. Chem., 281, 18126, 10.1074/jbc.M602851200 Carey, 2006, RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation, Mol. Cell, 24, 481, 10.1016/j.molcel.2006.09.012 Cairns, 1999, Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH and bromodomains, Mol. Cell, 4, 715, 10.1016/S1097-2765(00)80382-2 Zeng, 2008, Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing, Nat. Struct. Mol. Biol., 15, 626, 10.1038/nsmb.1416 Sun, 2007, Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4, Biochem. Biophys. Res. Commun., 358, 435, 10.1016/j.bbrc.2007.04.139 Hudson, 2000, Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain, J. Mol. Biol., 304, 355, 10.1006/jmbi.2000.4207 Jacobson, 2000, Structure and function of a human TAF(II)250 double bromodomain module, Science, 288, 1422, 10.1126/science.288.5470.1422 VanDemark, 2007, Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation, Mol. Cell, 27, 817, 10.1016/j.molcel.2007.08.018 Mujtaba, 2002, Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain, Mol. Cell, 9, 575, 10.1016/S1097-2765(02)00483-5 Mujtaba, 2004, Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation, Mol. Cell, 13, 251, 10.1016/S1097-2765(03)00528-8 Zeng, 2008, Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300, Structure, 16, 643, 10.1016/j.str.2008.01.010 Shen, 2007, Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails, Biochemistry, 46, 2100, 10.1021/bi0611208 Pamblanco, 2001, Bromodomain factor 1 (Bdf1) protein interacts with histones, FEBS Lett., 496, 31, 10.1016/S0014-5793(01)02397-3 Pizzitutti, 2006, The role of loop ZA and pro371 in the function of yeast Gcn5p bromodomain revealed through molecular dynamics and experiment, J. Mol. Recognit., 19, 1, 10.1002/jmr.748 Pearson, 1988, Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith–Waterman and FASTA algorithms, Proc. Natl. Acad. Sci. U.S.A., 85, 2444, 10.1073/pnas.85.8.2444 Thompson, 1994, ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673, 10.1093/nar/22.22.4673 Oliver, 2005, Crystal structure of the proximal BAH domain of the polybromo protein, Biochem. J., 389, 657, 10.1042/BJ20050310 Zhang, 2002, Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing, EMBO J., 21, 4600, 10.1093/emboj/cdf468 Hou, 2006, Structure of the Sir3 protein bromo adjacent homology (BAH) domain from S. cerevisiae at 1.95 Å resolution, Protein Sci., 15, 1182, 10.1110/ps.052061006 Hsu, 2005, Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing, Proc. Natl. Acad. Sci. U.S.A., 102, 8519, 10.1073/pnas.0502946102 Hou, 2005, Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing, Proc. Natl. Acad. Sci. U.S.A., 102, 8489, 10.1073/pnas.0503525102 Wong, 2002, RSC2 encoding a component of the rsc nucleosome remodeling complex is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae, Mol. Cell. Biol., 22, 4218, 10.1128/MCB.22.12.4218-4229.2002 Noguchi, 2006, The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo, EMBO J., 25, 5372, 10.1038/sj.emboj.7601396 Bell, 1995, The multidomain structure of Orc1p reveals similarity to regulators of DNA-replication and transcriptional silencing, Cell, 83, 563, 10.1016/0092-8674(95)90096-9 Gardner, 1999, A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in Saccharomyces cerevisiae, Genetics, 151, 31, 10.1093/genetics/151.1.31 Triolo, 1996, Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing, Nature, 381, 251, 10.1038/381251a0 Zhang, 2008, High mobility group proteins and their post-translational modifications, Biochim. Biophys. Acta, 1784, 1159, 10.1016/j.bbapap.2008.04.028 Bowles, 2000, Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators, Dev. Biol., 227, 239, 10.1006/dbio.2000.9883 Wegner, 1999, From head to toes: the multiple facets of Sox proteins, Nucleic Acids Res., 27, 1409, 10.1093/nar/27.6.1409 Wißmüller, 2006, The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors, Nucleic Acids Res., 34, 1735, 10.1093/nar/gkl105 Masse, 2002, The S. cerevisiae architectural HMGB protein NHP6a complexed with DNA: DNA and protein conformational changes upon binding, J. Mol. Biol., 323, 263, 10.1016/S0022-2836(02)00938-5 Weir, 1993, Structure of the HMG box motif in the B-domain of HMG1, EMBO J., 12, 1311, 10.1002/j.1460-2075.1993.tb05776.x Marmorstein, 2001, A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression, Cell, 104, 247, 10.1016/S0092-8674(01)00209-4 Dai, 2005, Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination, Mol. Cell. Biol., 25, 4413, 10.1128/MCB.25.11.4413-4425.2005 Lee, 2002, Characterization of human SMARCE1r high-mobility-group protein, Biochim. Biophys. Acta, 1574, 269, 10.1016/S0167-4781(01)00373-6 Horikawa, 2002, cDNA cloning of the human polybromo-1 gene on chromosome 3p21, DNA Seq, 13, 211, 10.1080/1042517021000021590 Wang, 2004, Polybromo protein BAF180 functions in mammalian cardiac chamber maturation, Genes Dev., 18, 3106, 10.1101/gad.1238104 Xia, 2008, BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer, Cancer Res., 68, 1667, 10.1158/0008-5472.CAN-07-5276 A. Montia, vol., Ph.D., Columbia University, New York, 2007, pp. 104.