Exosomal PD-L1 Retains Immunosuppressive Activity and is Associated with Gastric Cancer Prognosis

Annals of Surgical Oncology - Tập 26 - Trang 3745-3755 - 2019
Yibo Fan1,2, Xiaofang Che1,2, Jinglei Qu1,2, Kezuo Hou1,2, Ti Wen1,2, Zhi Li1,2, Ce Li1,2, Shuo Wang1,2, Ling Xu1,2, Yunpeng Liu1,2, Xiujuan Qu1,2
1Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
2Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, China

Tóm tắt

A recent study showed that circulating exosomal PD-L1 is an effective predictor for anti-PD-1 therapy in melanomas. Exosomal PD-L1 induced immunosuppression microenvironments in cancer patients. However, its prognostic value and immunosuppressive effect in gastric cancer (GC) were poorly understood. We retrospectively evaluated the prognostic value of exosomal PD-L1 and soluble PD-L1 in preoperative plasma of 69 GC patients. The correlation between exosomal PD-L1 and the T cell counts or cytokine in the plasma was evaluated in 31 metastatic GC patients before chemotherapy. Overall survival (OS) was significantly lower in the high exosomal PD-L1 group compared with the low exosomal PD-L1 group (P = 0.004). Exosomal PD-L1 was an independent prognostic factor in GC (n = 69, 95% confidence interval = 1.142–7.669, P = 0.026). However, soluble PD-L1 showed no correlation with OS (P = 0.139). Additionally, exosomal PD-L1 in the plasma samples of 31 metastatic GC patients was negatively associated with CD4+ T cell count (P = 0.001, R = − 0.549), CD8+ T-cell count (P = 0.054, R = − 0.349), and granzyme B (P = 0.002, R = − 0.537), indicating that exosomal PD-L1 was associated with immunosuppressive status of GC patients. GC cells also secreted exosomal PD-L1 and were positively associated with the amount of PD-L1 in corresponding GC cell lines. Besides, exosomal PD-L1 significantly decreased T-cell surface CD69 and PD-1 expressions compared with soluble PD-L1 due to its stable and MHC-I expression. Overall, exosomal PD-L1 predicts the worse survival and reflects the immune status in GC patients, resulting from a stronger T-cell dysfunction due to its stable and MHC-I expression.

Tài liệu tham khảo

Eto S, Yoshikawa K, Nishi M, et al. Programmed cell death protein 1 expression is an independent prognostic factor in gastric cancer after curative resection. Gastric Cancer. 2016;19(2):466–71. Xu C, Fillmore CM, Koyama S, et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinomawith elevated PD-L1 expression. Cancer Cell. 2014;25(5):590–604. Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015;37(4):764–82. Raufi AG, Klempner SJ. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol. 2015;6(5):561–9. Joshi SS, Maron SB, Catenacci DV. Pembrolizumab for treatment of advanced gastric and gastroesophageal junction adenocarcinoma. Future Oncol. 2018;14:417–30. Kim JW, Nam KH, Ahn SH, et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer. 2016; 19(1):42–52. Qing Y, Li Q, Ren T, et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther. 2015;9:901–9. Hou J, Yu Z, Xiang R, et al. Correlation between infiltration of FOXP3 + regulatory T cells and expression of B7-H1 in the tumor tissues of gastric cancer. Exp Mol Pathol. 2014;96(3):284–91. Frigola X, Inman BA, Lohse CM, et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res. 2011;17(7):1915–23. Kshirsagar SK, Alam SM, Jasti S, et al. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta. 2012;33(12):982–90. Ruffner MA, Kim SH, Bianco NR, Francisco LM, Sharpe AH, Robbins PD. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur J Immunol. 2009;39(11):3084–90. Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol. 2013; 191(11):5515–23. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl). 2013;91(4):431–7. Cai Z, Zhang W, Yang F, et al. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 2012;22(3):607–10. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6. Yang Y, Li CW, Chan LC, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28(8):862–4. Theodoraki MN, Yerneni S, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24:896–905. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82. Qu JL, Qu XJ, Zhao MF, et al. The role of cbl family of ubiquitin ligases in gastric cancer exosome-induced apoptosis of Jurkat T cells. Acta Oncol. 2009;48(8):1173–80. Zhang LY, Qu XJ, Fan YB, et al. The E3 ubiquitin ligase Cbl-b improves the prognosis of RANK positive breast cancer patients by inhibiting RANKL-induced cell migration and metastas. Oncotarget. 2015;6(26):22918–33. An T, Qin S, Xu Y, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522. Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn. 2015: S1525-1578(15)00047-1. Wang L, Wang H, Chen H, et al. Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma. Oncotarget. 2015;6(38):41228–36. Zheng Z, Bu Z, Liu X, et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin J Cancer Res. 2014;26(1):104–11. Johnson DB, Estrada MV, Salgado R, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582. Zhang X, Pei Z, Chen J, et al. Exosomes for immunoregulation and therapeutic intervention in cancer. J Cancer. 2016;7(9):1081–7. Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30(6):836–48. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–41.