Interaction between low rank coal and kaolinite particles: A DFT simulation
Tài liệu tham khảo
Oats, 2010, Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation, Miner. Eng., 23, 413, 10.1016/j.mineng.2009.12.002
Arnold, 1986, The effect of clay slimes on coal flotation, part I: the nature of the clay, Int. J. Miner. Process., 17, 225, 10.1016/0301-7516(86)90058-X
Zhao, 2012, The oxidation of copper sulfide minerals during grinding and their interactions with clay particles, Powder Technol., 230, 112, 10.1016/j.powtec.2012.07.016
Forbes, 2014, Decoupling rehology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp, Miner. Eng., 56, 136, 10.1016/j.mineng.2013.11.012
Wang, 2013, Diagnosis of the surface chemistry effects on fine coal flotation using saline water, Energy Fuels, 27, 4869, 10.1021/ef400909r
Yao, 2016, Depressing effect of fine hydrophilic particles on magnesite reverse flotation, Int. J. Miner. Process., 149, 84, 10.1016/j.minpro.2016.02.013
Zhang, 2013, Effects of clay and calcium ions on coal flotation, Int. J. Min. Sci. Technol., 23, 689, 10.1016/j.ijmst.2013.08.012
Kang, 2006, Effect of ultrasonic treatment on slime characteristics, J. China Univ. Min. Technol., 35, 783
Yao, 2016, Effects of fine–coarse particles interaction on flotation separation and interaction energy calculation, Part. Sci. Technol., 34, 1
Nguyen, 2004
Liu, 2015, Understanding different roles of lignosulfonate in dispersing clay minerals in coal flotation using deionised water and saline water, Fuel, 142, 235, 10.1016/j.fuel.2014.10.082
Kusuma, 2014, Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force measurements, Miner. Eng., 69, 15, 10.1016/j.mineng.2014.07.005
Gui, 2016, Interaction forces between coal and kaolinite particles measured by atomic force microscopy, Powder Technol., 301, 349, 10.1016/j.powtec.2016.06.026
Rath, 2014, Molecular modeling studies of oleate adsorption on iron oxides, Appl. Surf. Sci., 295, 115, 10.1016/j.apsusc.2014.01.014
Zhu, 2016, Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (101) surface, Miner. Eng., 92, 72, 10.1016/j.mineng.2016.03.007
Sivrikaya, 2014, Cleaning study of a low-rank lignite with DMS, Reichert spiral and flotation, Fuel, 119, 252, 10.1016/j.fuel.2013.11.061
Xia, 2015, Recent advances in beneficiation for low rank coals, Powder Technol., 277, 206, 10.1016/j.powtec.2015.03.003
Xia, 2012, Improving floatability of Taixi anthracite coal ofmild oxidation by grinding, Physicochem. Probl. Mi., 48, 393
Xia, 2012, Flotation of oxidized coal dry-ground with collector, Powder Technol., 228, 324, 10.1016/j.powtec.2012.05.043
Atesok, 2000, A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding, Fuel, 79, 1509, 10.1016/S0016-2361(00)00012-0
Ozkan, 2006, Investigation of mechanism of ultrasound on coal flotation, Int. J. Miner. Process., 81, 201, 10.1016/j.minpro.2006.07.011
Cinar, 2009, Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment, Fuel Process. Technol., 90, 1300, 10.1016/j.fuproc.2009.06.017
Lester, 2004, The effect of microwave pre-heating on five different coals, Fuel, 83, 1941, 10.1016/j.fuel.2004.05.006
Jena, 2008, Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal, Int. J. Miner. Process., 87, 42, 10.1016/j.minpro.2008.01.004
Vamvuka, 2001, The effect of chemical reagents on lignite flotation, Int. J. Miner. Process., 61, 209, 10.1016/S0301-7516(00)00034-X
Cebeci, 2002, The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors, Fuel, 81, 281, 10.1016/S0016-2361(01)00165-X
Wang, 2015, Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations, J. Hazard. Mater., 295, 43, 10.1016/j.jhazmat.2015.03.020
ˇSolc, 2011, Wettability of kaolinite (001)surfaces-molecular dynamic study, Geoderma, 169, 47, 10.1016/j.geoderma.2011.02.004
Wu, 2017, Moisture removal mechanism of low-rank coal by hydrothermal dewatering: physicochemical property analysis and DFT calculation, Fuel, 187, 242, 10.1016/j.fuel.2016.09.071
Shi, 2015, An interlayer expansionmodel for counterion-intercalated montmorillonite from first-principlescalculations, Comput. Mater. Sci., 96, 134, 10.1016/j.commatsci.2014.09.013
Pradip, 2002, Rai, Design of tailor-made surfactants for industrial applications using a molecular modelling approach, Colloids Surf. A., 205, 139, 10.1016/S0927-7757(01)01153-0
Rai, 2011, A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals, J. Colloid Inter. Sci., 362, 510, 10.1016/j.jcis.2011.06.069
Pradip, 2002, Molecular modeling of interactions of diphosphonic acid based surfactants with calcium minerals, Langmuir, 18, 932, 10.1021/la010625q
Chen, 2017, Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite, Appl. Surf. Sci., 419, 241, 10.1016/j.apsusc.2017.04.213
Han, 2016, DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces, Appl. Surf. Sci., 370, 403, 10.1016/j.apsusc.2016.02.179
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Mater., 14, 2717, 10.1088/0953-8984/14/11/301
Perdew, 1996, Generalized gradient approximationmade simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism, Phys. Rev. B, 4, 7892, 10.1103/PhysRevB.41.7892
Pfrommer, 1997, Relaxation of crystals with thequasi-Newton method, J. Comput. Phys., 131, 233, 10.1006/jcph.1996.5612
Young, 1988, Verification of the triclinic crystal structure of kaolinite, Clays Clay Miner., 36, 225, 10.1346/CCMN.1988.0360303
Xu, 2014, Monolayer adsorption of dodecylamine surfactants at the mica/water interface, Chem. Eng. Sci., 114, 58, 10.1016/j.ces.2014.04.005