Rice management interventions to mitigate greenhouse gas emissions: a review

Saddam Hussain1, Shaobing Peng1, Shah Fahad1, Abdul Khaliq2, Jikun Huang1, Kehui Cui1, Lei Nie1
1National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
2Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abao EB, Bronson KF, Wassmann R, Singh U (2000) Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rain fed conditions. Nutr Cycl Agroecosyst 58:131–139. doi: 10.1023/A:1009842502608

Adhya TK, Bharati K, Mohanty SR, Ramakrishnan B, Rao VR, Sethunathan N, Wassmann R (2000) Methane emission from rice fields at Cuttack, India. Nutr Cycl Agroecosyst 58:95–105. doi: 10.1023/A:1009886317629

Ahmad S, Li CF, Dai GZ, Zhan M, Wang JP, Pan SG, Cao CG (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in central China. Soil Tillage Res 106:54–61. doi: 10.1016/j.still.2009.09.005

Ali MA, Lee CH, Lee YB, Kim PJ (2009) Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity. Agric Ecosyst Environ 132:16–22. doi: 10.1016/j.agee.2009.02.014

Ali MA, Farouque MG, Haque M, Kabir A u (2012) Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. J Environ Sci Nat Resour 5:179–185. doi: 10.3329/jesnr.v5i1.11574

Armstrong J, Armstrong W (1988) Phragmites australis: a preliminary study of soil oxidizing sites and internal gas transport capacity. New Phytol 108:373–382. doi: 10.1111/j.1469-8137.1988.tb04177.x

Aulakh MS, Bodenbender J, Wassmann R, Rennenberg H (2000) Methane transport capacity of rice plants, II. Variations among different rice cultivars and relationship with morphological characteristics. Nutr Cycl Agroecosyst 58:367–375. doi: 10.1023/A:1009839929441

Aulakh MS, Khera TS, Doran JW, Bronson KF (2001a) Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biol Fertil Soils 34:375–389. doi: 10.1007/s003740100420

Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001b) Impact of root exudates of different cultivars and plant developmental stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86. doi: 10.1023/A:1004817212321

Aulakh MS, Wassmann R, Rennenberg H (2002) Methane transport capacity of twenty two rice cultivars from five major Asian rice growing countries. Agric Ecosyst Environ 91:59–71. doi: 10.1016/S0167-8809(01)00260-2

Babu JY, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42:532–554. doi: 10.1007/s00374-005-0048-3

Banger K, Tian H, Lu C (2012) Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob Chang Biol 18:3259–3267. doi: 10.1111/j.1365-2486.2012.02762.x

Beare MH, Gregorich EG, St-Georges P (2009) Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol Biochem 41:611–621. doi: 10.1016/j.soilbio.2008.12.024

Beri V, Sidhu BS, Bahl GS, Bhat AK (1995) Nitrogen and phosphorus transformations as affected by crop residue management practices and their influence on crop yields. Soil Use Manag 11:51–54. doi: 10.1111/j.1475-2743.1995.tb00496.x

Bhatia A, Sasmal S, Jain N, Pathak H, Kumar R, Singh A (2010) Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric Ecosyst Environ 136:247–253. doi: 10.1016/j.agee.2010.01.004

Bhattacharyya P, Roy KS, Neogi S, Adhya TK, Rao KS, Manna MC (2012) Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res 124:119–130. doi: 10.1016/j.still.2012.05.015

Bloom A, Swisher M (2010) Emissions from rice production. In: Cutler JC (ed) Encyclopedia of Earth. Accessed at June 15, 2011. Online available: http://www.eoearth.org/article/Emissions_from_Rice_Production?topic=54486

Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 473–507

Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci U S A 107:12052–12057. doi: 10.1073/pnas.0914216107

Butterbach-Bahl K, Papen H, Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy field. Plant Cell Environ 20:1175–1183. doi: 10.1046/j.1365-3040.1997.d01-142.x

Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196:7–14. doi: 10.1023/A:1004263405020

Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Ann Rev Environ Resour 28:315–358. doi: 10.1146/annurev.energy.28.040202.122858

Corton TM, Bajita J, Grospe F, Pamplona R, Wassmann R, Lantin RS (2000) Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutr Cycl Agroecosyst 58:37–53. doi: 10.1023/A:1009826131741

Das S, Adhya TK (2014) Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 213:185–192. doi: 10.1016/j.geoderma.2013.08.011

Das K, Baruah KK (2008) Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol Plant 134:303–312. doi: 10.1111/j.1399-3054.2008.01137.x

Denier van der Gon HAC (2000) Changes in CH4 emission from rice fields from 1960 to 1990s: 1. The declining use of organic inputs in rice farming. Global Biogeochem Cycles 13:1053–1062. doi: 10.1029/1999GB900048

Denier van der Gon HAC, Neue HU (1994) Impact of gypsum application on methane emission from a wetland rice field. Global Biogeochem cycles 8:127–134. doi: 10.1029/94GB00386

Denier van der Gon HAC, Kropff MJ, Van Breemen N et al (2002) Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proc Natl Acad Sci U S A 99:12021–12024. doi: 10.1016/j.geoderma.2013.08.011

Dobermann A, Witt C, Dawe D et al (2002) Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop Res 74:37–66. doi: 10.1016/S0378-4290(01)00197-6

Dong H, Yao Z, Zheng X et al (2011) Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmos Environ 45:1095–1101. doi: 10.1016/j.atmosenv.2010.11.039

FAOSTAT (2011) FAOSTAT agricultural data. http://faostat.fao.org

Feng J, Chen C, Zhang Y, Song Z, Deng A, Zheng C, Zhang W (2013) Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis. Agric Ecosyst Environ 164:220–228. doi: 10.1016/j.agee.2012.10.009

Freney JR (1997) Emission of nitrous oxide from soils used for agriculture. Nutr Cycl Agroecosyst 49:1–6. doi: 10.1023/A:1009702832489

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

Ghosh S, Majumdar D, Jain MC (2003) Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 51:181–195. doi: 10.1016/S0045-6535(02)00822-6

Global Methane Initiative (2010) Global methane emissions and mitigation opportunities. GMI, [Online] Available: www.globalmethane.org (August 17, 2011).

Gregorich EG, Rochette P, Vandenbygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Tillage Res 83:53–72. doi: 10.1016/j.still.2005.02.009

Gutierrez J, Kim SY, Kim PJ (2013) Effect of rice cultivar on CH 4 emissions and productivity in Korean paddy soil. Field Crop Res 146:16–24

Hadi A, Inubushi K, Yagi K (2010) Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy Water Environ 8:319–324

Han C, Zhong W, Shen W, Cai Z, Liu B (2013) Transgenic Bt rice has adverse impacts on CH4 flux and rhizospheric methanogenic archaea and methanotrophic bacterial communities. Plant Soil 369:297–316. doi: 10.1007/s11104-012-1522-y

Harada H, Kobayashi H, Shindo H (2007) Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis. Soil Sci Plant Nutr 53:668–677. doi: 10.1111/j.1747-0765.2007.00174.x

Hou AX, Chen GX, Wang ZP, Van Cleemput O, Jr Patrick WH (2000) Methane and nitrous oxide emissions form a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186. doi: 10.2136/sssaj2000.6462180x

Hou H, Peng S, Xu J, Yang S, Mao Z (2012) Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in southeast China. Chemosphere 89:884–892. doi: 10.1016/j.chemosphere.2012.04.066

Hou P, Li G, Wang S et al (2013) Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. J Environ Sci 25:1874–1881. doi: 10.1016/s1001-0742(12)60273-3

Huang SH, Jiang WW, Lu J, Cao JM (2005) Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields. China Environ Sci 25:540–543

Inubushi K, Sugii H, Nishino S, Nishino E (2001) Effects of aquatic weeds on methane emission from submerged paddy soils. Am J Bot 88:975–979

Inubushi K, Cheng WG, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob Chang Biol 9:1458–1464. doi: 10.1046/j.1365-2486.2003.00665.x

IPCC (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories workbook, vol 2. Cambridge University Press, Cambridge

IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 81–82

IRRI (1999). Biodiversity—maintaining the balance, 1997–1998 annual report, Los Baños, Philippines.

Itoh M, Sudo S, Mori S et al (2011) Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric Ecosyst Environ 14:359–372. doi: 10.1016/j.agee.2011.03.019

Jacinthe PA, Lal R (2005) Labile carbon and methane uptake as affected by tillage intensity in a Mollisol. Soil Tillage Res 80:35–45. doi: 10.1016/j.still.2004.02.018

Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Nutr Cycl Agroecosyst 104:399–417. doi: 10.1016/j.agee.2004.01.040

Jia Z, Cai Z, Tsuruta H (2006) Effect of rice cultivar on CH4 production potential of rice soil and CH4 emission in a pot experiment. Soil Sci Plant Nutr 52:341–348. doi: 10.1111/j.1747-0765.2006.00043.x

Jiang Y, Wang L, Yan X, Tian Y, Deng A, Zhang W (2013) Super rice cropping will enhance rice yield and reduce CH4 emission: a case study in Nanjing, China. Rice Sci 20:427–433

Jin F, Yang H, Zhao QG (2000) Research progress of soil organic carbon reserves and its impacting factors. Soil 1:11–17, in Chinese, with English abstract

Kasterine A, Vanzetti D (2010) The effectiveness, efficiency and equity of market-based instruments to mitigate GHG emission from the agri-food sector, in UNCTAD Trade and Environment Review 2009/2010, Geneva. Available at http://www.intracen.org/uploadedFiles/intracenorg/Content/Exporters/Sectors/Fair_trade_and_environmental_exports/Climate_change/TER_UNCTAD_KasterineVanzetti.pdf

Katayanagi K, Furukawa Y, Fumoto T, Hosen Y (2012) Validation of the DNDC-rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr 58:360–372. doi: 10.1080/00380768.2012.682955

Kerdchoechuen O (2005) Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agric Ecosyst Environ 108:155–163. doi: 10.1016/j.agee.2005.01.004

Kesheng S, Zhen L (1997) Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing. Nutr Cycl Agroecosyst 49:139–146. doi: 10.1023/A:1009734702524

Khaliq A, Gondal MR, Matloob A, Ullah E, Hussain S, Murtaza G (2013a) Chemical weed control in wheat under different rice residue management options. Pak J Weed Sci Res 19:1–14

Khaliq A, Shakeel M, Matloob A, Hussain S, Tanveer A, Murtaza G (2013b) Influence of tillage and weed control practices on growth and yield of wheat. Philipp J Crop Sci 38:54–62

Kludze HK, Delaune RD, Patrick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–200. doi: 10.2136/sssaj1993.03615995005700020017x

Ko JY, Kang HW (2000) The effects of cultural practices on methane emission from rice fields. Nutr Cycl Agroecosyst 58:311–314. doi: 10.1023/A:1009867208059

Koga N, Tajima R (2011) Assessing energy efficiencies and greenhouse gas emissions under bioethanol oriented paddy rice production in northern Japan. J Environ Manag 92:967–973. doi: 10.1016/j.jenvman.2010.11.008

Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184. doi: 10.1080/713610854

Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi: 10.1016/S1164-5563(01)01067-6

Lehmann J (2007) A handful of carbon. Nature 447:143–144. doi: 10.1038/447143a

Leon JC, Carpena AL (1995) Morphology-based diversity analysis of improved irrigated lowland rice (Oryza sativa L.) varieties in the Philippines. Philipp J Crop Sci 20:113–121

Li CF, Kou ZK, Yang JH, Cai ML, Wang JP, Cao CG (2010) Soil CO2 fluxes from direct seeding rice fields under two tillage practices in central China. Atmos Environ 44:2696–2704. doi: 10.1016/j.atmosenv.2010.04.045

Li D, Liu M, Cheng Y, Wang D, Qin J, Jiao J, Li H, Hu F (2011) Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res 113:77–81. doi: 10.1016/j.still.2011.02.006

Li CF, Zhou DN, Kou ZK, Zhang ZS, Wang JP, Cai ML, Cao CG (2012) Effect of tillage and N fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China. PLoS One 7:e34642. doi: 10.1371/journal.pone.0034642

Li CF, Zhang ZS, Guo LJ, Cai ML, Cao CG (2013) Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos Environ 80:438–444

Liang W, Shi Y, Zhang H, Yue J, Huang GH (2007) Greenhouse gas emissions from northeast China rice fields in fallow season. Pedosphere 17:630–638. doi: 10.1016/S1002-0160(07)60075-7

Lindau CW, Bollich PK (1993) Methane emissions from Louisiana first and ratoon crop rice. Soil Sci 156:42–48

Lindau CW, Bollich PK, Delaune RD, Patrick WH, Law VJ (1991) Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana USA rice field. Plant Soil 136:195–203. doi: 10.1007/BF02150050

Lindau CW, Bollich PK, Delaune RD (1995) Effect of rice variety on methane emission from Louisiana rice. Agric Ecosyst Environ 54:109–114. doi: 10.1016/0167-8809(95)00587-I

Linquist BA, Adviento-Borbe MA, Pittelkow CM, Van Kessel C, Van Groenigen KJ (2012a) Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop Res 135:10–21. doi: 10.1016/j.fcr.2012.06.007

Linquist BA, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C (2012b) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209. doi: 10.1111/j.1365-2486.2011.02502.x

Liou RM, Huang SN, Lin CW, Chen SH (2003) Methane emission from fields with three various rice straw treatments in Taiwan paddy soils pesticides. J Environ Sci Health B 38:511–527. doi: 10.1081/PFC-120021670

Liu S, Qin Y, Zou J, Liu Q (2010) Effects of water regime during rice growing season on annual direct N2O emission in a paddy rice–winter wheat rotation system in southeast China. Sci Total Environ 408:906–913. doi: 10.1016/j.scitotenv.2009.11.002

Liu XY, Qu JJ, Li LQ, Zhang AF, Jufeng Z, Zheng JW, Pan GX (2012) Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies? A cross site field experiment from South China. Ecol Eng 42:168–173. doi: 10.1016/j.ecoleng.2012.01.016

Liu S, Zhang Y, Lin F, Zhang L, Zou J (2013) Methane and nitrous oxide emissions from direct-seeded and seedling-transplanted rice paddies in southeast China. Plant Soil 13:1878–1887. doi: 10.1007/s11104-013-1878-7

Liu H, Hussain S, Peng S, Huang J, Cui K, Nie L (2014a) Potentially toxic elements concentration in milled rice differ among various planting patterns. Field Crop Res 168:19–26. doi: 10.1016/j.fcr.2014.08.007

Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L (2014b) Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agron Sustain Dev doi: 10.1007/s13593-014-0239-0

Lou Y, Inubushi K, Mizuno T et al (2008) CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Glob Chang Biol 14:2678–2687. doi: 10.1111/j.1365-2486.2008.01665.x

Lu Y, Wassmann R, Neue HU, Huang C, Bueno CS (2000) Methanogenic responses to exogenous substrate in anaerobic rice soils. Soil Biol Biochem 32:1683–1690. doi: 10.1016/S0038-0717(00)00085-7

Lyman N, Nalley LL (2013) Incentivizing net greenhouse gas emissions reductions in rice production: the case of Arkansas rice. J Agric Appl Econ 45:171–185

Ma J, Ma E, Xu H, Yagi K, Cai Z (2009) Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biol Biochem 41:1022–1028. doi: 10.1016/j.soilbio.2009.01.024

Ma K, Qiu Q, Lu Y (2010) Microbial mechanism for rice variety control on methane emission from rice field soil. Glob Chang Biol 16:3085–3095. doi: 10.1111/j.1365-2486.2009.02145.x

McTaggart IP, Clayton H, Smith KA (1994) Nitrous oxide flux from fertilized grassland: strategies for reducing emissions. In: van Ham J, Janssen LJ, Swart RJ (eds) Non-CO2 greenhouse gases. Kluwer Academic, Netherlands, pp 421–426

Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550–2557. doi: 10.1016/j.envpol.2009.02.037

Mei XQ, Wong MH, Yang Y, Dong HY, Qiu RL, Ye ZH (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117. doi: 10.1016/j.envpol.2012.02.018

Minamikawa K, Sakai N (2005) The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric Ecosyst Environ 107:397–407. doi: 10.1016/j.agee.2004.08.006

Mitra S, Jain MC, Kumar S, Bandyopadhya SK, Kalra N (1999) Effect of rice cultivars on methane emission. Agric Ecosyst Environ 73:177–183. doi: 10.1016/S0167-8809(99)00015-8

Naser HM, Nagata O, Tamura S, Hatano R (2007) Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci Plant Nutr 53:95–101. doi: 10.1111/j.1747-0765.2007.00105.x

Nayak D, Cheng K, Wang W et al (2013) Technical options to reduce greenhouse gas emissions from croplands and grasslands in China. UK-China Sustainable Agriculture Innovation Network-SAIN. Policy brief No. 9, October 2013

Nyamadzawo G, Wuta M, Chirinda N, Mujuru L, Smith JL (2013) Greenhouse gas emissions from intermittently flooded (Dambo) rice under different tillage practices in chiota smallholder farming area of Zimbabwe. Atmos Clim Sci 3:13–20. doi: 10.4236/acs.2013.34A003

Oenema O, Wrage N, Velthof GL, Van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65. doi: 10.1007/s10705-004-7354-2

Omonode RA, Vyn TJ, Smith DR, Hegymegi P, Ga A (2007) Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. Soil Tillage Res 95:182–195. doi: 10.1016/j.still.2006.12.004

Pandey D, Agrawal M, Bohra JS (2012) Greenhouse gas emissions from rice crop with different tillage permutations in rice-wheat system. Agric Ecosyst Environ 159:133–144. doi: 10.1016/j.agee.2012.07.008

Pathak H, Chakrabarti B, Bhatia A, Jain N, Aggarwal PK (2012) Potential and cost of low carbon technologies in rice and wheat systems: a case study for the Indo-Gangetic Plains. In: Pathak H, Aggarwal PK (eds) Low carbon technologies for agriculture: a study on rice and wheat systems in the Indo-Gangetic Plains, Indian Agricultural Research Institute, New Delhi, India pp 12–40

Peng S, Hou H, Xu J, Mao Z, Aabudu S, Luo Y (2011) Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy Water Environ 9:403–411. doi: 10.1007/s10333-011-0275-1

Pittelkow CM, Adviento-Borbe MA, Hill JE, Six J, Van Kessel C, Linquist BA (2013) Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric Ecosyst Environ 177:10–20. doi: 10.1016/j.agee.2013.05.011

Qin Y, Liu S, Guo Y, Liu Q, Zou J (2010) Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834. doi: 10.1007/s00374-010-0493-5

Reddy KR, Patrick WH (1976) Yield and nitrogen utilization by rice as affected by method and time of application of labeled nitrogen. Agron J 68:965–969

Reicosky DC, Archer DW (2007) Moldboard plow tillage depth and short-term carbon dioxide release. Soil Tillage Res 94:109–121. doi: 10.1016/j.still.2006.07.004

Riya S, Zhou S, Watanabe Y, Sagehashi M, Terada A, Hosomi M (2012) CH4 and N2O emissions from different varieties of forage rice (Oryza sativa L.) treating liquid cattle waste. Sci Total Environ 419:178–186. doi: 10.1016/j.scitotenv.2012.01.014

Rochette PH (2008) No-till only increases N2O emissions in poorly aerated soils. Soil Tillage Res 101:97–100. doi: 10.1016/j.still.2008.07.011

Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse. Science 248:1217–1219. doi: 10.1126/science.248.4960.1217

Sainju UM, Jabro JD, Caesar-Tonthat T (2010) Tillage, cropping sequence, and nitrogen fertilization effects on dry land soil carbon dioxide emission and carbon content. J Environ Qual 39:935–945. doi: 10.2134/jeq2009.0223

Sato S, Yamaji E, Kuroda T (2011) Strategies and engineering adaptations to disseminate SRI methods in large-scale irrigation systems in Eastern Indonesia. Paddy Water Environ 9:79–88. doi: 10.1007/s10333-010-0242-2

Schils RLM, Verhagen A, Aarts HFM, Sebek LBJ (2005) A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutr Cycl Agroecosyst 71:163–175. doi: 10.1007/s10705-004-2212-9

Schlesinger WH (1999) Carbon sequestration in soils. Science 284:2095. doi: 10.1126/science.284.5423.2095

Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416. doi: 10.1029/JD094iD13p16405

Setyanto P, Makarim AK, Fagi AM, Wassmann R, Buendia LV (2000) Crop management affecting methane emissions from irrigated and rainfed rice in Central Java (Indonesia). Nutr Cycl Agroecosyst 58:85–93. doi: 10.1007/978-94-010-0898-3_8

Setyanto P, Rosenani AB, Boer R, Fauziah CI, Khanif MJ (2004) The effect of rice cultivars on methane emission from irrigated rice field. Indones J Agric Sci 5:20–31

Shang QY, Yang XX, Gao CM, Gao CM, Wu PP, Liu JJ, Xu YC, Shen QR, Zou JW, Guo SW (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Glob Chang Biol 17:2196–2210. doi: 10.1111/j.1365-2486.2010.02374.x

Shin YK, Yun SH (2000) Varietal differences in methane emission from Korean rice cultivars. Nutr Cycl Agroecosyst 58:315–320. doi: 10.1023/A:1009819324897

Six J, Ogle MS, Breidt FJ, Conant TR, Mosier RA, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Glob Chang Biol 10:155–160. doi: 10.1111/j.1529-8817.2003.00730.x

Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236. doi: 10.1016/j.eja.2003.08.002

Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag 20:255–263. doi: 10.1111/j.1475-2743.2004.tb00366.x

Smith P, Goulding KW, Smith KA, Powlson DS, Smith JU, Falloon PD, Coleman K (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential. Nutr Cycl Agroecosyst 60:237–252. doi: 10.1023/A:1012617517839

Smith P, Martino D, Cai Z et al (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 497–540

Smith P, Martino D, Cai Z et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363:789–813. doi: 10.1098/rstb.2007.2184

Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266. doi: 10.1016/j.agee.2009.04.021

Song WZ, Wang SB, Su WH, Zeng JH (1996) Study on the main greenhouse gases N2O, CH4 and CO2 emission in China. Environ Sci 17:85–92, in Chinese, with English abstract

Tenuta M, Beauchamp EG (2003) Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Can J Soil Sci 83:521–532. doi: 10.4141/S02-062

Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264. doi: 10.1073/pnas.1116437108

Tokida T, Cheng WG, Adachi M, Matsunami T, Nakamura H, Okada M, Hasegawa T (2013) The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air [CO2] enrichment and soil warming experiments. Plant Soil 364:131–143. doi: 10.1007/s11104-012-1356-7

Towprayoon S, Smakgahn K, Poonkaew S (2005) Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59:1549–1556. doi: 10.1016/j.chemosphere.2005.02.009

Tyagi L, Kumari B, Singh SN (2010) Water management: a tool for methane mitigation from irrigated paddy fields. Sci Total Environ 408:1085–1090. doi: 10.1016/j.scitotenv.2009.09.010

Van Beek CL, Meerburg BG, Schils RLM, Verhagen J, Kuikman PJ (2010) Feeding the world’s increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environ Sci Policy 13:89–96. doi: 10.1016/j.envsci.2009.11.001

Van Nguyen N, Ferrero A (2006) Meeting the challenges of global rice production. Paddy Water Environ 4:1–9. doi: 10.1007/s10333-005-0031-5

Verge XPC, De Kimpe C, Desjardins RL (2007) Agricultural production, greenhouse gas emissions and mitigation potential. Agric For Meteorol 142:255–269. doi: 10.1016/j.agrformet.2006.06.011

Wang B, Neue HU, Samonte HP (1997) Effect of cultivar difference (‘IR72’, ‘IR65598’ and ‘Dular’) on methane emission. Agric Ecosyst Environ 62:31–40. doi: 10.1016/S0167-8809(96)01115-2

Wassmann R, Schutz H, Papen H et al (1993) Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry 11:83–101. doi: 10.1007/BF00004136

Wassmann R, Buendia LV, Lantin RS et al (2000a) Mechanisms of crop management impact on methane emissions from rice fields in Los Banos, Philippines. Nutr Cycl Agroecosyst 58:107–119. doi: 10.1023/A:1009838401699

Wassmann R, Lantin RS, Neue HU, Buendia LV, Corton TM, Lu Y (2000b) Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutr Cycl Agroecosyst 58:23–36. doi: 10.1023/A:1009874014903

Wassmann R, Aulakh MS, Lantin RS, Rennenberg H, Aduna JB (2002) Methane emission patterns from rice fields planted to several rice cultivars for nine seasons. Nutr Cycl Agroecosyst 64:111–124. doi: 10.1023/A:1021171303510

Wassmann R, Neue HU, Ladha JK, Aulakh MS (2004) Mitigating greenhouse gas emissions from rice–wheat cropping systems in Asia. Environ Dev Sustain 6:65–90. doi: 10.1007/978-94-017-3604-6-4

Watanabe A, Katoh K, Kimum M (1993) Effect of rice straw application on CI-h emission from paddy fields, I. Effect of weathering of rice straw in the field during off-crop season. Soil Sci Plant Nutr 39:701–706

Watanabe A, Kajiwara M, Tashiro T, Kimura M (1995) Influence of rice cultivars on methane emission from paddy fields. Plant Soil 176:51–56. doi: 10.1007/BF00017674

Win KT, Nonaka R, Toyota K, Motobayashi T, Hosomi M (2010) Effects of option mitigating ammonia volatilization on CH4 and N2O emissions from a paddy field fertilized with anaerobically digested cattle slurry. Biol Fertil Soils 46:589–595. doi: 10.1007/s00374-010-0465-9

Win KT, Nonaka R, Win AT, Sasada Y, Toyota K, Motobayashi T (2013) Effects of water saving irrigation and rice variety on greenhouse gas emissions and water use efficiency in a paddy field fertilized with anaerobically digested pig slurry. Paddy Water Environ. doi: 10.1007/s10333-013-0406-y

Wu FL, Zhang HL, Li L, Chen F, Huang FQ, Xiao XP (2009) Characteristics of CH4 emission and greenhouse effects in double paddy soil with conservation tillage. Sci Agric Sin 41:2703–2709 (In Chinese)

Xiao XP, Wu FL, Huang FQ, Li Y, Sun GF, Hu Q, He YY, Chen F, Yang GL (2007) Greenhouse air emission under different pattern of rice-straw returned to field in double rice area. Res Agr Mod 28:629–632 (in Chinese)

Xie JF, Li YE (2002) A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils. Chin Agric Meteorol 23:47–52 (in Chinese)

Xing GX, Cao YC, Shi SL, Sun GQ, Du LJ, Zhu JG (2002) Denitrification in underground saturated soil in a rice paddy region. Soil Biol Biochem 34:1593–1598. doi: 10.1016/S0038-0717(02)00143-8

Xing GX, Zhao X, Xiong ZQ, Yan XY, Xua H, Xie YX, Shi SL (2009) Nitrous oxide emission from paddy fields in China. Acta Ecol Sin 29:45–50. doi: 10.1016/j.chnaes.2009.04.006

Xu X, Boeckx P, Wang Y, Huang Y, Zheng X, Hu F, Van Cleemput O (2002) Nitrous oxide and methane emissions during rice growth and through rice plants: effect of dicyandiamide and hydroquinone. Biol Fertil Soils 36:53–58. doi: 10.1007/s00374-002-0503-3

Yagi K, Tsuruta H, Kanda K, Minami K (1996) Effect of water management on methane emission from a Japanese rice paddy field: automated methane monitoring. Glob Biogeochem Cycles 10:255–267. doi: 10.1029/96GB00517

Yan X, Shi S, Du L, Xing G (2000) Pathways of N2O emission from rice paddy soil. Soil Biol Biochem 32:437–440. doi: 10.1016/S0038-0717(99)00175-3

Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries. Glob Chang Biol 9:237–254. doi: 10.1046/j.1365-2486.2003.00564.x

Yan X, Yagi K, Akiyama H, Akimoto H (2005) Statistical analysis of the major variables controlling methane emission from rice fields. Glob Chang Biol 11:1131–1141. doi: 10.1111/j.1365-2486.2005.00976.x

Yang S, Peng S, Xu J, Luo Y, Li D (2012) Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Phys Chem Earth 54:30–37. doi: 10.1016/j.pce.2011.08.020

Yao Z, Zheng X, Dong H, Wang R, Mei B, Zhu J (2012) A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric Ecosyst Environ 152:1–9. doi: 10.1016/j.agee.2012.02.004

Yu KW, Patrick WH (2004) Redox window with minimum global warming potential contribution from rice soils. Soil Sci Soc Am J 68:2086–2091. doi: 10.2136/sssaj2003.1952

Yu KW, Chen GX, Patrick WH (2004) Reduction of global warming potential contribution from a rice field by irrigation, organic matter, and fertilizer management. Glob Biogeochem Cycles 18:GB3018

Zhang H, Xue YG, Wang ZQ, Yang JC, Zhang JH (2009) Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crop Res 113:31–40. doi: 10.1016/j.fcr.2009.04.004

Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475. doi: 10.1016/j.agee.2010.09.003

Zhang W, Yu Y, Huang Y, Li T, Wang P (2011) Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob Chang Biol 17:3511–3523. doi: 10.1111/j.1365-2486.2011.02495.x

Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275. doi: 10.1007/s11104-011-0957-x

Zhang HL, Bai XL, Xue JF, Chen ZD, Tang HM, Chen F (2013) Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS One 8:e65277. doi: 10.1371/journal.pone.0065277

Zheng X, Wang M, Wang Y et al (2000) Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems. Adv Atmos Sci 17:83–92. doi: 10.1007/s00376-000-0045-2

Zou J, Huang Y, Jiang J, Zheng X, Sass RL (2005) A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob Biogeochem Cycles 19:GB2021. doi: 10.1029/2004GB002401

Zou J, Huang Y, Qin Y, Liu S, Shen Q, Pan G, Lu Y, Liu Q (2009) Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Glob Chang Biol 15:229–242. doi: 10.1111/j.1365-2486.2008.01775.x

Zschornack T, Bayer C, Zanatta JA, Vieira FCB, Anghinoni I (2011) Mitigation of methane and nitrous oxide emissions from flood-irrigated rice by no incorporation of winter crop residues into the soil. Rev Bras Ciênc Solo 35:623–634. doi: 10.1590/S0100-06832011000200031