PL-DVFS: combining Power-aware List-based scheduling algorithm with DVFS technique for real-time tasks in Cloud Computing

Springer Science and Business Media LLC - Tập 74 - Trang 5578-5600 - 2018
Monireh Safari1, Reihaneh Khorsand1
1Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran

Tóm tắt

In recent years, energy efficiency has emerged as one of the most important design requirements for modern computing systems, ranging from single servers to data centers and Clouds, as they continue to consume an enormous amount of electrical power. Cloud computing can be used to achieve energy efficiency through efficient task scheduling in the distributed environment. This efficient task scheduling helps to improve resource utilization, which, in turn, helps to minimize energy consumption. In this paper, we work toward minimizing energy of directed acyclic graph-structured applications on heterogeneous cloud system. The paper also combines power-aware list-based scheduling algorithm with dynamic voltage and frequency scaling (DVFS) technique for real-time tasks (PL-DVFS) to maintain the quality of service while considering tasks deadlines. The goal of the approach is to improve performance and overall reduced energy consumption comprising CPU energy (busy and idle) and communication energy. Experiments conducted with synthetic workflow graphs clearly demonstrate the advantage of the proposed approach.

Tài liệu tham khảo

Ceuppens L, Sardella A, Kharitonov D (2008) Power saving strategies and technologies in network equipment opportunities and challenges, risk and rewards. In: Applications and the Internet, SAINT 2008. International Symposium on 2008. IEEE, pp 381–384 Etoh M, Ohya T, Nakayama Y (2008) Energy consumption issues on mobile network systems. In: Applications and the Internet, SAINT 2008. International Symposium on 2008. IEEE, pp 365–368 Wang L, von Laszewski G, Dayal J, Furlani TR (2009) Thermal aware workload scheduling with backfilling for green data centers. In: Performance Computing and Communications Conference (IPCCC), 2009 IEEE 28th International 2009. IEEE, pp 289–296 Forrest W (2008) How to cut data center carbon emissions?. Website Hogbin EJ (2004) ACPI: Advanced configuration and power interface. Phoenix USA, pp 1–24 Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv Comput 82:47–111 Venkatachalam V, Franz M (2005) Power reduction techniques for microprocessor systems. ACM Comput Surv (CSUR) 37(3):195–237 Bansal S, Kumar P, Singh K (2005) Dealing with heterogeneity through limited duplication for scheduling precedence constrained task graphs. J Parallel Distrib Comput 65(4):479–491 Huang Q, Su S, Li J, Xu P, Shuang K, Huang X (2012) Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE Computer Society, pp 781–786 Zhang Y, Ansari N (2013) On architecture design, congestion notification, TCP incast and power consumption in data centers. IEEE Commun Surv Tutor 15(1):39–64 Tang Z, Qi L, Cheng Z, Li K, Khan SU, Li K (2016) An energy-efficient task-scheduling algorithm in DVFS-enabled cloud environment. J Grid Comput 14(1):55–74 Kaur N, Bansal S, Bansal RK (2015) Towards energy efficient scheduling with DVFS for precedence constrained tasks on heterogeneous cluster system. In: Recent Advances in Engineering & Computational Sciences (RAECS), 2nd International Conference on 2015. IEEE, pp 1–6 Hosseini motlagh S, Khunjush F, Samadzadeh R (2015) SEATS: smart energy-aware task scheduling in real-time cloud computing. J Supercomput 71(1):45–66 Buyya R, Beloglazov A, Abawajy J (2010) Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. arXiv:1006.0308 Bansal S, Kumar P, Singh K (2003) An improved duplication strategy for scheduling precedence constrained graphs in multiprocessor systems. IEEE Trans Parallel Distrib Syst 14(6):533–544 Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274 Kurek JE (1990) Transaction briefs. IEEE Trans Circuits Syst 37(8):1041 Yao F, Demers A, Shenker S (1995) A scheduling model for reduced CPU energy. In: Foundations of Computer Science, Proceedings of the 36th Annual Symposium on 1995. IEEE, pp 374–382 Kim KH, Buyya R, Kim J (2007) Power aware scheduling of bag-of-tasks applications with deadline constraints on DVS-enabled clusters. In: CCGrid, vol 7. pp 541–548 Ma Y, Gong B, Sugihara R, Gupta R (2012) Energy-efficient deadline scheduling for heterogeneous systems. J Parallel Distrib Comput 72(12):1725–1740 Ma Y, Gong B, Zou L (2010) Energy-optimization scheduling of task dependent graph on DVS-enabled cluster system. In: ChinaGrid Conference (ChinaGrid), 2010 Fifth Annual. IEEE, pp 183–190 Kaur N, Bansal S, Bansal RK (2015) Towards energy efficient scheduling with DVFS for precedence constrained tasks on heterogeneous cluster system. In: Recent Advances in Engineering & Computational Sciences (RAECS), 2nd International Conference on 2015. IEEE, pp 1–6 Baskiyar S, Abdel-Kader R (2010) Energy aware DAG scheduling on heterogeneous systems. Clust Comput 13(4):373–383 Lee YC, Zomaya AY (2009) On effective slack reclamation in task scheduling for energy reduction. JIPS 5(4):175–186 Mori Y, Asakura K, Watanabe T (2009) A task selection based power-aware scheduling algorithm for applying dvs. In: Parallel and Distributed Computing, Applications and Technologies. International Conference on 2009. IEEE, pp 518–523 Baskiyar S, Palli KK (2006) Low power scheduling of dags to minimize finish times. In: International Conference on High-Performance Computing. Springer, Berlin, Heidelberg, pp 353–362 Agarwal D, Jain S (2014) Efficient optimal algorithm of task scheduling in cloud computing environment. arXiv:1404.2076 Calheiros RN, Buyya R (2014) Energy-efficient scheduling of urgent bag-of-tasks applications in clouds through DVFS. In: Cloud Computing Technology and Science (CloudCom), IEEE 6th International Conference on 2014. IEEE, pp 342–349 Wang L, Von Laszewski G, Dayal J, Wang F (2010) Towards energy aware scheduling for precedence constrained parallel tasks in a cluster with DVFS. In: Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, pp 368–377 Cheng C, Li J, Wang Y (2015) An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing. Tsinghua Sci Technol 20(1):28–39 Kim KH, Beloglazov A, Buyya R (2009) Power-aware provisioning of cloud resources for real-time services. In: Proceedings of the 7th International Workshop on Middleware for Grids, Clouds and e-Science. ACM Wu CM, Chang RS, Chan HY (2014) A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Futur Gener Comput Syst 37:141–147 Zhang Y, Wang Y, Wang H (2016) Energy-efficient task scheduling for DVFS-enabled heterogeneous computing systems using a linear programming approach. In: Performance Computing and Communications Conference (IPCCC), 2016 IEEE 35th International. IEEE, pp 1–8 Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2016) An autonomic approach for resource provisioning of cloud services. Clust Comput 19(3):1017–1036 Garg R, Singh AK (2016) Energy-aware workflow scheduling in grid under QoS constraints. Arab J Sci Eng 41(2):495–511 Arabnejad H, Barbosa JG (2014) List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans Parallel Distrib Syst 25(3):682–694 Kaur T, Chana I (2015) Energy efficiency techniques in cloud computing: a survey and taxonomy. ACM Comput Surv (CSUR) 48(2):22 Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50 Khorsand R, Safi-Esfahani F, Nematbakhsh N, Mohsenzade M (2017) Taxonomy of workflow partitioning problems and methods in distributed environments. J Syst Softw 132:253–271 Khorsand R, Safi-Esfahani F, Nematbakhsh N, Mohsenzade M (2017) ATSDS: adaptive two-stage deadline-constrained workflow scheduling considering run-time circumstances in cloud computing environments. J Supercomput. 73(6):2430–2455