Nicotine activates and desensitizes midbrain dopamine neurons

Nature - Tập 390 Số 6658 - Trang 401-404 - 1997
Volodymyr I. Pidoplichko1, Mariella DeBiasi2, John T. Williams3, John A. Dani4
1Division of Neuroscience Baylor College of Medicine Houston, Texas 77030-3498, USA
2Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
3Vollum Institute for Biomedical Research, Oregon Health Science University, Portland, USA
4Division of Neuroscience, Baylor College of Medicine, Houston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peto,, Lopez, A. D., Boreham, J., Thun, M. & Heath, C. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 399, 1268–1278 (1992).

Corrigall, W. A. & Coen, K. M. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology 99, 473–478 (1989).

Clarke, P. B. S. in Effects of nicotine on biological systems(eds Adlkofer, F. & Thurau, K.) 285–294 (Birkhäuser, Basel, (1991)).

Stolerman, I. P. & Shoaib, M. The neurobiology of tobacco addiction. Trends Pharmacol. Sci. 12, 467–473 (1991).

Dani, J. A. & Heinemann, S. Molecular and cellular aspects of nicotine abuse. Neuron 16, 905–908 (1996).

Nestler, E. J. Molecular mechanisms of drug addiction. J. Neurosci. 12, 2439–2450 (1992).

Pontieri, F. E., Tanda, G., Orzi, F. & Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382, 255–257 (1996).

Corrigall, W. A. & Coen, K. M. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology 104, 171–176 (1991).

Corrigall, W. A., Coen, K. M. & Adamson, K. L. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653, 278–284 (1994).

Wada, E. et al . Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J. Comp. Neurol. 284, 314–335 (1989).

Marks, M. J. et al . Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784 (1992).

Clarke, P. B. S. Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog. Brain Res. 98, 77–83 (1993).

Calabresi, P., Lacey, M. G. & North, R. A. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br. J. Pharmacol. 98, 135–140 (1989).

Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F. & London, E. D. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Dependence 33, 23–29 (1993).

Mercuri, N. B., Bonci, A., Calabresi, P., Stefani, A. & Bernardi, G. Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur. J. Neurosci. 7, 462–496 (1995).

Benowitz, N. L., Porchet, H. & Jacob, P. Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Proc. Brain Res. 79, 279–287 (1989).

Changeux, J.-P., Devillers-Thiery, A. & Chemouilli, P. Acetylcholine receptor: an allosteric protein. Science 225, 1335–1345 (1984).

Wonnacott, S. The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol. Sci. 11, 216–218 (1990).

Lester, R. A. J. & Dani, J. A. Time-dependent changes in central nicotinic acetylcholine channel kinetics in excised patches. Neuropharmacology 33, 27–34 (1994).

Sargent, P. The diversity of neuronal nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 16, 403–443 (1993).

McGehee, D. S. & Role, L. W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 57, 521–546 (1995).

Role, L. W. & Berg, D. K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16, 1077–1085 (1996).

Alkondon, M. & Albuquerque, E. X. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J. Pharmacol. Exp. Ther. 265, 1455–1473 (1993).

Séguéla, P., Wadiche, J., Dineley-Miller, K., Dani, J. A. & Patrick, J. W. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596–604 (1993).

Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M. & Dani, J. A. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383, 713–716 (1996).

Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223–244 (1991).

Bonci, A. & Williams, J. T. Acommon mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631–639 (1996).

Pich, E. M. et al . Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86 (1997).

Kang, Y. & Kitai, S. T. Awhole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci. Res. 18, 209–221 (1993).

Briggs, C. A. & McKenna, D. G. Effect of MK-801 at the human alpha 7 nicotinic acetylcholine receptor. Neuropharmacology 35, 407–414 (1996).