Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries
Tài liệu tham khảo
Kim, 2012, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2, 710, 10.1002/aenm.201200026
Slater, 2013, Batteries sodium-ion batteries, advanced functional materials, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, 19, 10.1038/nchem.2085
Hong, 2013, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci., 6, 2067, 10.1039/c3ee40811f
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f
Kundu, 2015, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed., 54, 3431, 10.1002/anie.201410376
Ge, 1988, Electrochemical intercalation of Sodium in Graphite, Solid State lonics, 28, 1172, 10.1016/0167-2738(88)90351-7
Asher, 1958, Lamellar compound of sodium with graphite, Nature, 409, 181
Wang, 2013, Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance, Carbon, 55, 328, 10.1016/j.carbon.2012.12.072
Kim, 2015, Sodium storage behavior in natural graphite using ether-based electrolyte systems, Adv. Funct. Mater., 25, 534, 10.1002/adfm.201402984
Yan, 2014, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries, Adv. Energy Mater., 4, 1301584, 10.1002/aenm.201301584
Liu, 2014, In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers, Nano Lett., 14, 3445, 10.1021/nl500970a
Wen, 2014, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun., 5, 4033, 10.1038/ncomms5033
Jache, 2014, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena, Angew. Chem. Int. Ed., 53, 10169, 10.1002/anie.201403734
Zhang, 2015, Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions, Energy Storage Mater., 1, 112, 10.1016/j.ensm.2015.08.006
Li, 2015, Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries, Energy Storage Mater.
Hasegawa, 2015, Hard carbon anodes for Na-ion batteries: toward a practical use, ChemElectroChem, 2, 1917, 10.1002/celc.201500412
Luo, 2015, Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent, ACS Appl. Mater. Interfaces, 7, 2626, 10.1021/am507679x
Cao, 2012, Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett., 12, 3783, 10.1021/nl3016957
Jüntgen, 1981, Carbon molecular sieves: production from coal and application in gas separation, Fuel, 60, 817, 10.1016/0016-2361(81)90144-7
Singh, 1996, Significance of entropic selectivity for advanced gas separation membranes, Ind. Eng. Chem. Res., 35, 1231, 10.1021/ie950559l
Baker, 2008, Natural gas processing with membranes: an overview, Ind. Eng. Chem. Res., 47, 2019, 10.1021/ie071083w
Brunauer, 1940, Am. J. Chem. Soc., 62, 1723, 10.1021/ja01864a025
Garrido, 1987, Use of nitrogen vs. carbon dioxide in the characterization of activated carbons, Langmuir, 3, 76, 10.1021/la00073a013
Cazola-Amoros, 1996, Characterization of activated carbon fibers by CO2 adsorption, Langmuir, 12, 2820, 10.1021/la960022s
Rouquerol, 1994, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem., 66, 1739, 10.1351/pac199466081739
Cao, 2003, Surface-modified graphite as an improved intercalating anode for lithium-ion batteries, Electrochem. Solid State Lett., 6, A30, 10.1149/1.1534730
Alcántaraz, 2005, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries, Electrochem. Solid State Lett., 8, A222, 10.1149/1.1870612
Thomas, 2002, Electrochemical insertion of sodium into hard carbons, Electrochim Acta, 46, 39, 10.1016/S0013-4686(00)00542-9
Li, 2015, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries, Nano Energy, 12, 224, 10.1016/j.nanoen.2014.12.032
Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1nm, Science, 313, 1760, 10.1126/science.1132195
Gogotsl, 2003, Nanoporous carbide-derived carbon with tunable pore size, Nat. Mater., 2, 591, 10.1038/nmat957
Chmiola, 2008, Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory, Angew. Chem Int. Ed., 120, 3440, 10.1002/ange.200704894
Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095, 10.1103/PhysRevB.61.14095
Zhu, 2015, Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries, J. Power Sources, 293, 626, 10.1016/j.jpowsour.2015.05.116
A.P. Cohn, K. Share, R. Carter, L. Oakes, C.L. Pint, Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene, Nano Lett. (2015), 10.1021/acs.nanolett.5b04187.
